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ABSTRACT

Identification of rainfall thresholds remains a key problem in debris flow forecasting. Usually, a rainfall threshold
is derived through linking rainfall and debris flow occurrence; however, the results are largely inaccurate in
many cases. In this work, artificial intelligence methods were employed to select the optimal parameters for
forecasting, and to evaluate the uncertainties of different parameter selections in building rainfall thresholds. The
optimal procedure considers that a debris flow occurs at the peak of the rainfall event, uses average values of
rainfall recorded by rain gauges installed within the source area, and incorporates more than three rainfall
parameters. Selection of the rainfall parameters greatly influences the derived results, and increasing number of
parameters can enhance the accuracy of predictions. The model incorporating both the antecedent rainfall and
the event rainfall is proposed and thresholds are derived from the relations of antecedent rainfall and the
accumulative amount and duration of event rainfall. The thresholds were found to vary with types of debris
flows, suggesting effects of antecedent rainfall. Despite the “black box” nature of AI methods, the proposed
approach can help select the optimal parameters and models, reduce the uncertainty in deriving rainfall

thresholds, and further enhance understanding of the mechanism of debris flow formation.

1. Introduction

Debris flows are triggered primarily by heavy rainfall in catchments,
and the frequency is expected to increase in response to intensification
of the hydrological cycle caused by global warming (Gariano and Guz-
zetti, 2016). One of the primary objectives of debris flow research is to
enhance capability of forecasting (Hiirlimann et al., 2019), for which
establishing appropriate rainfall thresholds remains an important goal.
Such thresholds can be defined either by adopting physical approaches
that employ a physical models (e.g., Tang et al., 2019; Berti et al., 2020;
Guo et al., 2021; Hoch et al., 2021), or by employing statistical methods
(e.g., Caine, 1980; Guzzetti et al., 2007, 2008).

Establishing a threshold is realized by taking rainfall data and debris
flow occurrence records as “input” and producing the threshold as
“output” using a generic “model” based on a single equation or a set of
operations (Martinengo et al., 2021). Many critical thresholds and
models have been proposed using precipitation parameters, the selec-
tion of which is dependent on the characteristics of local rainfall. Un-
fortunately, such thresholds are largely inaccurate and have rarely been
used for warning system (Staley et al., 2013; Nikolopoulos et al., 2014;
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2015). Earlier studies have discussed the uncertainties in rainfall
threshold, e.g., those linked to the spatial variability and temporal res-
olution of data (Nikolopoulos et al., 2014; Marra et al., 2014, 2016;
Gariano et al., 2020), the choice of reference rain gauges (Peres et al.,
2018; Abraham et al., 2020; Crema et al., 2023), and the differences
between radar rainfall and rain gauge measurements (Rossi et al., 2017,
Nikolopoulos et al., 2015). Although procedures have been proposed to
filter the effects of rainfall estimation uncertainty, overcoming such
uncertainty remains a challenge, which contributes to the inaccuracy of
forecasting (Guzzetti et al., 2007; Jakob et al., 2012).

Artificial intelligence (AI) methods have recently been used in
forecasting, which can help with linking rainfall to debris flow occur-
rence (e.g., Mondini et al., 2023), selecting parameters (e.g., Zhao et al.,
2022b), and calculating rainfall thresholds at different exceedance
probabilities automatically (e.g., Melillo et al., 2018). Despite the “black
box” in nature, it provides a framework for establishing better-optimized
thresholds under constrained conditions. In this study, the influence of
the selections in each procedure and the related uncertainties trans-
ferred to the forecasting results were evaluated, and the most important
rainfall parameters were identified using AI methods. The optimal
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model and specific rainfall thresholds were proposed for different types
of debris flows based on actual monitoring data.

2. Case study area and data source
2.1. General introduction of Jiangjia Gully

This study focused on Jiangjia Gully (JJG) in the Xiaojiang River, a
tributary of the Jinsha River in Southwest China (Fig. 1). The catchment
covers an area of 48.6 km? and extends 13.9 km from the divide
(elevation of 3269 m) to the outlet (1042 m). It is frequently impacted by
tectonic activities (e.g., earthquakes), and characterized by deeply-cut
terrain. Approximately 80 % of the exposed rocks are highly fractured
and mildly metamorphosed, representing an abundant source of mate-
rial for debris flows (Guo et al., 2020, 2021).

The catchment can be divided into three climatic regimes: (1) mean
annual precipitation (MAP) of 850-1200 mm in the headwater area at
elevation > 2200 m, (2) MAP of 700-850 mm at elevation of
1600-2200 m, and (3) MAP of 600-700 mm in the area extending from
the outlet to the elevation of 1600 m. The variations in climate affect the
distributions of vegetation, rock weathering, slope failure, and flow
generation, thereby contributing in varying degrees to debris flow
occurrence (Cui et al., 2005; Guo et al., 2020, 2021). The rainy season
(May-September) accounts for > 80 % of the MAP and witnesses the
frequent occurrence of debris flows.

2.2. Data source

JJG has long-term records of rainfall and debris flow. Ten rain gauges
have been installed, of which four (G1 to G4) are located within the
major source area (Mengian Gully; Fig. 1). These gauges measure rain-
fall using a 0.1-mm tipping bucket, and the data are transmitted in real
time via the General Packet Radio Service.

Debris-flow parameters include the front and end times of a surge,
surge numbers, flow velocity, height, and density, all are measured
manually and recorded at the monitoring section (Fig. 1). The front and
end time, the duration and surge number were recorded directly. The
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flow velocity was determined by measuring the interval of the front
passing through two sections separating 200 m in the channel, and flow
height were estimated by experienced experts. Additionally, samples of
the flow bodies were collected using a volume-calibrated sampling
container controlled by electronic devices for density and volume
sediment concentration analyses. The recorded data, especially the ac-
curate time (1-s time scale) of debris flow detection at the monitoring
section, represent an important basis for this analysis, and the errors of
the source data are minimized as much as possible.

Rainfall and debris flow data recorded during 2006-2023 were used
in this work. All 40 of the rainfall events known to have triggered debris
flows were involved, and an additional 100 other rainfall events (daily
rainfall range: 6.5-42.8 mm) that occurred during the same period but
did not result in debris flow occurrence were also considered.

3. Methodology
3.1. Framework for building rainfall thresholds

The data processing includes discretizing continuous rainfall records
into a series of individual rainfall events and identification of debris flow
initiation time in the source regions. Identification of relevant rainfall
parameters (rainfall amount, rainfall intensity, duration, antecedent
rainfall, etc.) and selection of rain gauges are also important which
might cause notable uncertainty to the rainfall thresholds (Hirschberg
et al., 2021).

Al methods were used to analyze uncertainties in data processing and
to identify the optimal combination of process and parameters, i.e., the
Nonlinear Gaussian Kernel Support Vector Machine (NGK-SVM), was
used to determine the optimal combination of processes, and SHapley
Additive exPlanations (SHAP), was used to explain and verify the results
of NGK-SVM. Two metrics, Accuracy (A.) and the Fy-score (F5), were
defined to evaluate the effectiveness of the parameters and selections
recommended by the Al methods. The methods are explained in detail in
Section 3.2. A flowchart of the overall procedure is shown in Fig. 2.

Fig. 1. Topographic map and locations of monitoring stations in Jiangjia Gully.
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Fig. 2. Flowchart of the process of rainfall threshold establishment. The content within the blue solid boxes refer to the methods of building rainfall thresholds
(explained in Section 3.2). The content within the grey dashed boxes represent parameters/selections in the process of building rainfall thresholds (explained in

Section 4).
3.2. Methods for building rainfall thresholds

(1) Nonlinear Gaussian Kernel Support Vector Machine for selecting
parameters.

NGK-SVM is a type of machine learning model that can be used to
evaluate the performance of different selections with respect to debris
flow initiation time, rain gauges, and the rainfall parameters. It can also
help to analyze the impact on the results of those selections at each step

of the process.

A traditional linear Support Vector Machine (SVM) can derive a
threshold with linear form; however, it does not distinguish between
events occurring or not (Fig. 3a); and a nonlinear SVM can do this by
providing an ideal threshold. But this might be overfitted and cause
errors (Fig. 3b). In comparison, NGK-SVM can handle more complex
nonlinear relationships (Vapnik, 1998; Bishop and Nasrabadi, 2006).
The input dataset is transformed into a spatial dataset using the Gaussian

Fig. 3. Modeling principle of NGK-SVM. (a) threshold with linear form, (b) an ideal threshold using nonlinear SVM, and (c) a curved surface boundary obtained by
NGK-SVM. Input Space: the original space where data are represented. For example, for a dataset with features such as rainfall and time, the input space is a two-
dimensional plane where each point represents a combination of rainfall and time. Feature space: the space where data are represented after being transformed or
mapped from the input space. In the context of NGK-SVM, this transformation is achieved using a Gaussian kernel function. Red and blue dots represent debris flow

and non-debris flow events, respectively.
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kernel function, and thereby a curved surface boundary is obtained as a
threshold to distinguish occurrence and non-occurrence events (Fig. 3c).
However, as a “black box”, the boundary is insufficient to elucidate the
physical importance between the parameters, and can sometimes be
excessively intricate as a threshold. Therefore, NGK-SVM is employed
only to help determine the optimal procedures and parameters, rather
than to establish a threshold.

(2) SHapley Additive exPlanations for
parameters.

The SHAP method provides a unified framework that explains the
output of any machine learning model by attributing the prediction to
the individual feature in a way that is both consistent and interpretable
(Lundberg and Lee, 2017). It assigns a value to each feature that rep-
resents its contribution to the model’s output for a given prediction. It
was used primarily to assess the importance of rainfall parameters in this
study, and the value can be calculated as follows:

ISIMCIN| — S| = 1)!
IN|!

evaluating rainfall

¢ =

SCN\{i}

fSsudfit) - f©)] m

where ¢; is the SHAP value for rainfall parameter i in NGK-SVM model. N
is the set of all parameters. |N| is the number of parameters in set N. Sis a
subset of parameters without containing parameter i. |S| is the number
of parameters in subset S. f(S) is the model’s output under the condition
of subset S and f (S U {i}) is model’s output with parameter i added to
the subset S.

For example, For instance, consider a scenario where we have three
rainfall parameters N = {D, E, I}, and the aim to calculate the SHAP
value for parameter i = D. The possible subsets S of parameters
excluding parameters D are: S; = ¢, Sy = {E}, S3 = {I}, S4 = {E, I}. Then
¢; for every subset is calculated as:
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The SHAP value of parameter D is therefore obtained by accumulating
through Eq. (3):

¢p = ¢p s, + ¥ps, T $p s, T Pp s, 3

(3) Indicators for evaluating the thresholds

The metrics A. and Fy were used as the major indicators (Sokolova
and Lapalme, 2009) for assessing the quality of the rainfall thresholds:
A, for the performance of classification models, and Fy for the perfor-
mance with precision (P) and recall (R).

Specifically, A, measures the proportion of correctly classified in-
stances out of the total number in the dataset:

A. = (TP + TN) /(TP + TN + FP + FN) “

where TP (True Positives) and TN (True Negatives) represent the
number of positive and negative instances correctly predicted, respec-
tively, and FP (False Positives) and FN (False Negatives) represent the
number of negative and positive instances incorrectly predicted as
positive and negative, respectively.

Fy evaluates the performance of classification models with consid-
eration of both precision (P) and recall (R), which represent false alarms
and missed detections, respectively:

Fy= (1+p°)-PR/(f>P+R) )
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P = TP/ (TP + FP) ©)

R = TP /(TP + FN) )

where f is a weight parameter.

The values conventionally used for f are 0.5, 1, and 2 (Witten and
Frank, 2002). A bigger f value gives a higher weight of R. Because the
impact of a missed detection is much greater than that of a false alarm in
debris flow prediction, § was set to 2 in this study. The formula for
calculation of Fy can be simplified to the following:

F, = 5TP/ (STP + 4FN + FP) (8)
4. Procedure for deriving rainfall thresholds

The key steps in deriving rainfall thresholds include identification of
rainfall events, determination of debris flow initiation times, selection of
representative rain gauges and rainfall parameters, and deriving a
threshold based on the parameters.

4.1. Identification of rainfall events

In most cases, rainfall is a complex signal exhibiting fluctuations and
irregular behavior on multiple temporal scales. Only after identification
of a rainfall event can the required rainfall parameters (e.g., amount,
duration, and intensity) be derived. A common method is to define a
minimum inter-event duration (Dp,) and maximum inter-event amount
(Pmax) that discretize continuous rainfall records into a series of indi-
vidual rainfall events with rainfall amount less than Pp,ax in Dy (Guo
et al., 2016; Jiang et al., 2021; Hirschberg et al., 2021).

The definitions of Dpi, and Ppax vary between catchments and
depend on local hydrogeological conditions. For small catchments, Dy,
ranges from 10 min to 6 h and Py, ranges in 0.1-1.0 mm (e.g., Bel et al.
2017; Berti et al., 2020; Hirschberg et al., 2021). For the JJG, antecedent
rainfall events have been distinguished previously as occurring within 3
h (or more) before rainfall of < 0.1 mm or within 6 h of rainfall of < 0.5
mm (i.e., Dpin = 3h, Ppax = 0.1 mm; or Dy, = 6h, Ppax = 0.5 mm),
identified by local meteorological conditions (Guo et al., 2013, 2020;
Zhuang et al., 2015). Following this criteria, 140 rainfall events were
determined in the period 2006-2023, of which 40 triggered debris
flows.

4.2. Identification of debris flow initiation time

Although a debris flow can be identified precisely at a point, the
exact time of its initiation in the source area remains unknown. The
initiation time is set as a peak before the debris flow occurrence time,
with consideration of the debris flow travel time from the source area to
the monitoring section (e.g., Berti et al., 1999; Arattano and Moia, 1999;
Tecca and Genevois, 2009; Okano et al., 2012).

Debris flows are generally triggered by rainfall that occurred shortly
before their appearance. This study considered the highest rainfall in-
tensity within approximately 30 min are plausible to trigger the debris
flow based on the velocity and travel length of debris flows (Guo et al.,
2020). The potential triggering rainfall for debris flows at each gauge
can be estimated. The following three scenarios for the triggering rain-
fall period were established (Fig. 4):

Scenario 1: from rainfall beginning to the end of the event (rainfall
amount: Eq, duration: Dq);

Scenario 2: from rainfall beginning to the peak time of the event
(rainfall amount: E,, duration: D5);

Scenario 3: from rainfall beginning to the end of the peak period
(rainfall amount: E3, duration: D3).
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Fig. 4. Definition of the relevant rainfall and duration for each of the three scenarios.

4.3. Selection of representative rain gauges

In many cases, rain gauge selection is obligated because installing
rain gauges in mountainous areas presents substantial challenges, and
therefore the reference rain gauge is often the only gauge available.
However, many studies have indicated that relying solely on a single
rain gauge may not be the optimal approach, particularly in the context
of localized convective storms. Rain gauges close to the initiation may
record rainfall that differ significantly from those at the catchment
outlet due to the spatiotemporal variability of rainfall (e.g., Smith et al.,
2007; Staley et al., 2017; Guo et al., 2021; Crema et al., 2023).

Previous studies suggested that the distance between a debris flow
source area and a rain gauge station should typically be limited to within
3-6 km within a mountainous region. For example, it is proposed that
the distribution of triggering rainfall varies considerably over distance
of < 5 km in alpine regions (Smith et al., 2007; Panziera et al., 2011). On
average, it is observed that the depth of the triggering rainfall at a dis-
tance of 5 km is approximately 70 % of that estimated at the initiation
point, whereas the estimation accuracy reduces to 40 % at a distance of
approximate 6-10 km (Marra et al., 2016; Nikolopoulos et al., 2015).

The records in JJG indicate that rainfall is highly spatially hetero-
geneous, e.g., the gauges in Mengian Gully only 2-km apart present
spatial variation in some events. Uncertainties arise notably when the
distance between failure locations and rain gauge sites is > 3 km (Guo
et al., 2021). The following three options were evaluated to select the
optimal rain gauge:

1) G5, the lowest rain gauge (represents the station at the outlet);

2) G3, one of the rain gauges in the high-elevation headwater region;

3) Gm, the mean values of G1 to G4, representing the average rainfall
conditions in the source regions.

4.4. Selection of rainfall parameters

Selection of appropriate rainfall parameters is important both for
building rainfall thresholds and for improving prediction accuracy. The
rainfall parameters that are generally considered include rainfall in-
tensity (I, mm/h), rainfall duration (D, h), and event rainfall (E, mm),
based on which I-D and E-D are the parameter pairings used most
commonly for threshold building (e.g., Caine 1980; Aleotti 2004; Guz-
zetti et al., 2007, 2008; Guo et al., 2020). This study also considered the

additional parameters of antecedent rainfall (R,, mm) and absolute en-
ergy (Eaps, mm?) when selecting the optimal triggering factor.
Antecedent rainfall (R,) is generally calculated as follows:

R, = ;Ri(K)" ©

where R; is the rainfall amount recorded during the preceding n days, i
indicates the number of days before the triggering rainfall event of the
debris flow (1 <i <n), and K is an attenuation coefficient of the i-th day
that represents the role of evaporation; for JJG, the value of K is taken as
0.8 (Cui et al., 2007).

Generally, n is set to 30 days (e.g., Cui et al., 2007; Tien Bui et al.,
2013; Saadatkhah et al., 2015); however, its value was set to 3, 5, 7, 10,
15, 21, and 30 days for this evaluation. The increasing rate of the cu-
mulative antecedent rainfall was used to assess the impact of additional
rainfall on soil moisture as the value of n increased. The increasing rates

Fig. 5. Growth rate of antecedent rainfall.
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of cumulative antecedent rainfall were < 10 % for all the gauges of G1 to
G5 after n = 15 (Fig. 5). Therefore, n = 15 was used in subsequent
analysis.

The absolute energy (E,ps) was also introduced to reflect the intensity
of changes in rainfall magnitude, which is defined as:

m
Eps = > R} 10)
k=1

where Ry is the rainfall amount (mm), and m the number of sampling
periods in a rainfall event. For a given duration and total rainfall
amount, rainfall events characterized by more abrupt variations exhibit
higher E,ps values and pose a greater potential for triggering debris flows
(Zhao et al., 2022b).

4.5. Methods for establishing rainfall thresholds

The objective of building a rainfall threshold is likely to define the
lower boundary for debris flow occurrence based on the selected rainfall
parameters. Numerous methods have been adopted for drawing rainfall
thresholds, e.g., regression and frequentist methods, return time calcu-
lations, and Bayesian analysis (Brunetti et al., 2010; Peruccacci et al.,
2012; Chen and Huang, 2010; Berti et al., 2012). These methods are
well-suited for delineating the critical boundary between occurrence
and non-occurrence of debris flows, particularly when the relationships
among parameters are ambiguous. Al methods, with their advantages of
offering objective data analysis, automation, and adaptability to
evolving data, provide more flexible and adjustable solutions that can be
optimized and improved as new data become available (Mondini et al.,
2023). However, in this context, given the “black box™ nature of Al
methods, we derived a threshold model incorporating both the power
relationship of I-D and the linear relationship of E-R, (Jan and Lee, 2004;
Jan and Chen, 2005; Caine et al., 1980; Brunetti et al., 2010; Peruccacci
et al., 2012), based on the optimal parameters selected by NGK-SVM, to
develop a model with physical significance.

5. Results

Specific identification of the parameters in each step (e.g., initiation
time, rainfall parameters, and rain gauges) results in various combina-
tions of the parameters available for building a rainfall threshold. In this
case, 279 combinations were produced and evaluated, and the optimal
combination for establishing rainfall thresholds was determined (Fig. 6).
Moreover, the influence of each key step was examined, especially the
importance of the selection of rainfall parameters to the performance of
the thresholds. The rainfall thresholds were ultimately built based on the
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optimal process and optimal combination of parameters.

5.1. Optimal process for establishing rainfall thresholds

The threshold boundary was obtained by the NGK-SVM and the
predictive effect was evaluated by A. and Fp. The A. of 92 % of the
combinations exceeded 0.50, with a maximum of 0.84 and a mean of
0.66, suggesting that most of the results were reasonable. However, Fy
showed a range of variation and therefore it was used as the major in-
dicator in the following evaluation.

The predictive performances are shown in Fig. 7. Each combination
provided a certain threshold, and its efficiency was evaluated using the
F5 metric. The results were classified into six levels: (I) excellent: Fy >
0.80, (II) good: 0.80 > F5 > 0.75, (III) satisfactory: 0.75 > F5 > 0.70, (IV)
mediocre: 0.70 > Fo > 0.60, (V) poor: 0.60 > F5 > 0.50, and (VI) inef-
fective: F5 < 0.50. The numbers in the boxes represent the quantity of Fp
at a certain level, and the histograms represent the proportion exceeding
the satisfactory level (Fo > 0.70).

The performance of these processes and the selection of the param-
eters are investigated on the basis of the criteria of exceeding the
satisfactory (Fp > 0.70) and the highest (I, F5 > 0.80) levels.

In identifying debris flow initiation time, at the level of F5 > 0.70, the
proportion for Scenarios 1-3 is 30 %, 36 %, and 34 %, respectively, i.e.,
the result for Scenario 2 represents a slightly higher proportion. At level
I, the performance of Scenario 2 is similar to Scenario 3, each accounting
for 38 %, and the performance of both is notably superior to that of
Scenario 1 (23 %). This result suggests that all three scenarios can
provide predictive performance that is reasonably comparable; howev-
er, Scenario 2 offers the best effectiveness.

In selecting rain gauges, at the level of Fo > 0.70, the prediction ef-
ficiency of Gm is slightly higher than that of G3 (42 % versus 40 %), and
the value of each is much better than that of G5 (18 %). Notably, the
performance of Gm is markedly superior to that of G3 at level I. This
suggests that the selection of Gm and G3 would be effective, but that Gm
would provide the optimal predictive effect.

The F, values of different combinations of parameters (an individual
parameter and combinations of two and multiple (>3) parameters) are
used to evaluate the predictive performance. Combination of multiple
(>3) parameters yields much better performance, and individual
parameter provides the worst results. At the level of F» > 0.70, combi-
nation of multiple parameters presents an evident advantage (64 % at
level III, 70 % at level II) in comparison with the other two options.
Specifically, the proportion increases as F; rises, reaching up to 96 % at
level 1. This suggests that employing a combination of multiple param-
eters markedly enhances predictive effectiveness.

Overall, the results of the evaluation are consistent at the levels of

Fig. 6. Procedure and selections involved in deriving rainfall thresholds.
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Fig. 7. Number and proportion of different selections at each step across different levels.

both F; > 0.70 and F, > 0.80, indicating satisfactory and excellent ex-
pectations, respectively. Ultimately, it is suggested that the optimal se-
lection for establishing a rainfall threshold is to take the rainfall peak
time as the debris flow initiation time, consider the average of rain
gauge data from the source region as the data source, and combine
multiple rainfall parameters.

5.2. Impact of the rainfall threshold procedure on the results

It is important to evaluate the impact of the procedures, including
the identification of rainfall period, adoption of rain gauges, and selec-
tion of rainfall parameters, on the derived rainfall thresholds. The mean
values of Fy for the selections in each step were calculated (Table 1),
which varies with scenarios of initiation-time determination and makes
little differences (only of 0.01 in F; value). F5 was improved by 0.04 and
0.05, respectively by selecting rain gauges of G5, G3, and Gm. And F»
increased by 0.06 when rainfall parameters were selected from single to
combination of two and multiple parameters. This indicates that
changing the selections at different steps influences the results to un-
equal extents.

The increase proportion of F, resulting from individual step selec-
tions was used to assess the impacts (Table 2). Altering the debris flow
initiation time had a minimal effect on Fs, contributing only 1.4 % and
1.5 %. In contrast, the selection of rain gauges significantly influenced
the results, accounting for an increase of 6.3 % and 7.2 % in F,. Notably,
the selection of rainfall parameters exerted the greatest influence,
contributing 9.8 % and 9.0 % to the overall increase in Fy. This indicates
that the rainfall models and parameters remain the most critical factor
affecting prediction reliability. Furthermore, the selection of rain gauges
also warrants significant consideration. Data from the lowest station
introduces a much lower F, value compared to using the average data of
rainfall gauges within source regions, which significantly enhances
forecasting accuracy (0.65 versus 0.74). This indicate that a rain gauge

Table 1
Mean value of F, for different selections within the key steps.

Debris flow initiation time Rain gauge Rainfall parameter
0.68 (Scenariol) 0.65 (G5) 0.61 (Single)

0.69 (Scenario 2) 0.69 (G3) 0.67 (Double)
0.70 (Scenario 3) 0.74 (Gm) 0.73 (Multiple)

Table 2
The increase proportion of F.

Debris flow initiation time Rain gauge Rainfall parameter

1.5 % (Scenario 1 — 2)
1.4 % (Scenario 2 — 3)

6.2 % (G5 - G3)
7.2 % (G3 - Gm)

9.8 % (Single — Double)
9.0 % (Double — Multiple)

located in the lower part of the catchment may not accurately represent
the actual rainfall conditions that trigger debris flows due to the spatial
heterogeneity of rainfall.

5.3. Influence of rainfall parameters on threshold predictions

In the following, the order of the importance of the selected pa-
rameters, and the influence on the thresholds are examined using SHAP
values by taking A. and F, as the major evaluation indices.

The SHAP values of the selected parameters were calculated (Fig. 8a)
by taking the rainfall peak time (Scenario 2) as the debris flow initiation
time and the average of the data from gauges (Gm) as the data source.

For each parameter, a positive (negative) SHAP value reflects posi-
tive (negative) impact. A positive impact means that a debris flow occurs
and a negative impact means that a debris flow does not occur. The
values of Ry, E, I, and E,,s are all positively correlated with the SHAP
value, indicating that higher values of R,, E, I, and E,ps are associated
with greater likelihood of debris flow occurrence. In contrast, D is
negatively correlated with the SHAP value, suggesting that larger values
of D are associated with reduced likelihood of debris flow occurrence.

To express the relative importance of the parameters, the absolute
average SHAP values for each parameter were calculated using all 140
samples, indicating the order of importance: R > D > E > I > Egp
(Fig. 8b), which is broadly consistent with the order based on A, and Fs.
The SHAP value evaluates the importance of a parameter by increasing
or decreasing the specified parameter, and A. and F5 represent the
predictive effective realized when using this specific parameter. There-
fore, the derived order of parameter importance is considered
reasonable.

It is evident that R, and D rank as the most important parameters,
and previous studies have similarly highlighted the relevance of R, and
D in building rainfall thresholds (Guo et al., 2013). The role of D is
particularly distinctive because it exhibits negative correlation with
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Fig. 8. SHAP values of different rainfall parameters: (a) SHAP values and (b) absolute averages of the SHAP values, A. and F, for each rainfall parameter.

SHAP on the one hand, and demonstrates exceptionally low A. (0.44) on
the other hand. Specifically, the low A, value attributes to the high false
alarm rate (P = 0.32), and suggests that D cannot act as the forecasting
parameter independently. Conversely, the high SHAP value indicates
that its importance is reflected through combination with other pa-
rameters. The most commonly used combinations are E-D and/or I-D, in
which E and I are usually regarded as directly responsible for triggering
debris flows. When using E-D to build the thresholds, both A. and F» are
improved to 0.54 and 0.69 (Table 3), representing an improvement of
25.1 % and 2.8 %, respectively. The combination of D, E, and R, further
improves A. and F by 40.3 % and 5.7 % compared with the combination
of D and E, reaching values of 0.76 and 0.75, respectively. The
remarkable improvement of A. emphasizes the important role of D in the
combinations of parameters through reducing false alarms. Addition-
ally, the combinations of D, E, I, and D, R,, I are comparatively less
effective than the combination of D, E, and R, (A, = 0.60, F» = 0.69, and
A. = 0.73, F; = 0.73, respectively).

However, if the remaining parameters (I and Ejp,s) are included in the
combination, further improvements in A, and F, are minimal. For
example, when adding I to the D-E-R, combination, A. increased by only
0.9 % and F, increased by 1.7 %. When adding Eups to the D-E-Ry-I
combination, there was an increase of only 1.5 % for A. and 1.0 % for F».
Despite the improvement, incorporating additional parameters inevi-
tably increased the complexity of building rainfall thresholds. From this
perspective, the D-E-R, combination is regarded as the optimal combi-
nation for rainfall thresholds.

5.4. Optimal rainfall thresholds

(1) Rainfall thresholds.

The optimal rainfall thresholds for the JJG catchment were then
derived based on the importance of the parameters. R, yields the best
prediction performance, and can acts as a threshold by its own. The
result is shown in Fig. 9a:

R,=C 1D

Table 3

Performance of various combinations of parameters.
Rainfall parameter Ac F2
D 0.44 0.67
D-1 0.54 0.66
D-E 0.54 0.69
D-E-I 0.60 0.69
D-I-R, 0.73 0.73
D-E-R, 0.76 0.75
D-E-R,-1 0.77 0.77

D-E-Ry-I-Eqps 0.78 0.78

where C is a constant.

Then, D is combined with R, to build a threshold owing to its
important role in a combination of parameters. An exponential relation
of D and R,, proposed as Eq. (12), was used to build a threshold
following previous research (Guo et al., 2013), and the result is shown in
Fig. 9b:

D = a-exp(f-R,) 12)

where a and f are parameters.

Then E is added to the combination and with R, and D. The relation
between R, and E is generally presented as a linear function in the
expression of the rainfall threshold for debris flow occurrence (Jan and
Lee, 2004), indicating that antecedent rainfall and event rainfall both
make substantial contributions in parallel to debris flow occurrences.
Therefore, the relation is preliminarily proposed as:

Re=R,+E 13)

where R, is the effective rainfall (mm).
The commonly used E-D relation assumes that the threshold curve
follows a power law (Brunetti et al., 2010; Peruccacci et al., 2012):

E=aD’ 14)

The relations of D, R,, and R, are then expressed as in Eq. (15) to
build a rainfall threshold, and the result is shown in Fig. 9c:

R.=aD’ +R, (15)

where a and b are parameters.

The given model was fitted to the debris flow data, followed by
iterative adjustments of the boundaries (line and/or surface). The model
parameters were then determined upon achieving the maximum F»-
score.

The R, threshold yields a high false alarm rate (P = 0.39) at R, = 6.8.
When taking R, = 11.5, which is associated with the maximum F» (0.72),
A is 0.54 and three debris flow events were missed detections (Fig. 9a).

The R,-D threshold improves the forecasting effectiveness, e.g., 22.3
% in terms of A, and 5 % in terms of F, when compared with the
effectiveness realized using the threshold based only on R, (Fig. 9b); and
the D-E-R, threshold further improves the effectiveness with A, = 0.81
and F, = 0.82. In comparison with the R,-D model, A. and F, are
improved by 21.5 % and 9.2 %, respectively (Fig. 9c). This threshold is
preferable not only for its higher effectiveness, but also because of its
physical relevance in considering both the event rainfall and the ante-
cedent rainfall, and its combination with the commonly used E-D and E-
R, relations.

Comparing with the E-D model, which results in Ac = 0.36 and Fp =
0.62 (Fig. 10a), the E-D-R, model improves results remarkably, with A,
and F, increasing by 121.7 % and 32.2 %, respectively.
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Fig. 9. Rainfall thresholds of the three models: (a) R,, (b) Ry-D, and (c) E-D-R,.

Fig. 10. Thresholds for different types of debris flows: (a) E-D. Lines 1, 2, and 3 represent the E-D thresholds for debris flows of type 1, 2, and all events, and (b) D-E-
Ra. Re1, Re2, and R represent the D-E-R, thresholds for debris flows of type 1, 2, and all events.

(2) Rainfall thresholds for debris flows with different formation type.

Influence of forming types of debris flow has been usually ignored in
previous studies. In some cases, debris flows act as normal hydrological
processes supplied by instantaneous shallow soil failures (Type 1),
whereas other cases involve large landslides and blockage-breaking
phenomena (Type 2). These can be distinguished by the lag time be-
tween the rainfall peak and the flow occurrence, and the ratio of the
peak discharge of the debris flow to the water flow (Guo et al., 2021).

The thresholds using the E-D and E-D-R, models for the two types are
shown in Fig. 10. Type 1 requires a much higher threshold than Type 2.
The results are evaluated using A. and F, as listed in Table 4. Slight
improvement is achieved for Type 1 when accounting for antecedent
rainfall. However, the results for Type 2 are improved markedly, i.e., A¢
and F, are improved from 0.29 to 0.59 and from 0.42 to 0.66, indicating
that antecedent rainfall has much greater impact on Type 2, and thus the
accurate predication of Type 2 is much more difficult.

Table 4
Test results of rainfall thresholds for different types of debris flows and models.

Formation type Parameter Accuracy Fy

1 E-D 0.92 0.84
E-D-R, 0.93 0.85

2 E-D 0.29 0.42

E-D-R, 0.59 0.66

6. Discussion

Recent studies have indicated that AI can play an important role in
the assessment and prediction of geohazards (Guzzetti et al., 2008;
Mondini et al., 2023; Zhao et al., 2022a). This study further sub-
stantiates AI's potential to assist developing rainfall thresholds for
debris flows in small catchments, including the precise identification of
debris flow initiation times, the strategic selection of representative rain
gauges and optimal rainfall parameters, and the quantitative evaluation
of these selections.

Statistical methods integrated with expert knowledge of debris flow
formation processes can effectively identify key parameters through
meticulous manual selection and construct a reasonable predictive
model (Chien-Yuan et al., 2005; Guo et al., 2020). However, these ap-
proaches often incorporate subjective interpretations and assumptions,
which may introduce bias and uncertainty (Guo et al., 2020). In
contrast, Al offers significant advantages in processing large and com-
plex datasets objectively, uncovering hidden patterns and relationships
that might not be readily apparent, thereby reducing the uncertainty
associated with debris flow threshold construction. For instance,
although antecedent rainfall was recognized in debris flow occurrence in
this specific catchment, its role in threshold has proven challenging (Guo
et al., 2013). This study leverages Al to assess the significance of various
rainfall parameters (including antecedent rainfall), and develops a
comprehensive threshold incorporating multiple parameters, demon-
strating superior accuracy compared to those derived from traditional
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empirical methods (“E-D-R,” vs “I-D”, and 0.76 vs 0.54).

Nevertheless, Al exhibits certain limitations. A primary concern is its
black-box nature, where models operate in ways that are not easily
interpreted. Additionally, while one of AI’s strengths lies in processing
large volumes of data and complex relationships, insufficient or poor-
quality data can compromise predictive accuracy due to the reliance
on data integrity. Another consideration is that, despite the inherent
advantages of any AI method, the selection should be based on the
specific conditions of the basin and available data, as well as practical
forecasting requirements. While numerous Al approaches are currently
available, not all are suitable for this specific scenario. For example,
deep learning methods such as convolution neural networks (CNN) and
recurrent neural networks (RNN) have been effectively applied in the
data analysis of geohazards (e.g., Ghorbanzadeh et al, 2019; Ma and
Mei, 2021). CNN is more appropriate for processing continuous spatial
data but is less suitable for rainfall data in this catchment due to the
relatively sparse distribution of rain gauge networks. RNN, which excels
at capturing spatiotemporal dependencies in rainfall data, requires
larger datasets, increasing the risk of overfitting during model training
when using the limited dataset available. Therefore, these methods may
be more appropriate for large-scale, long-term spatiotemporal data
analysis. Given the limited data availability typical of small catchments,
this study selected a relatively simpler model NGK-SVM, which features
a more straightforward structure, lower data requirements, and
enhanced interpretability, making it particularly suitable for this
context. It is utilized to identify the most critical rainfall parameters and
the most appropriate forecasting model. Subsequently, SHAP is
employed to validate the results of NGK-SVM, allowing for further
interpretation in conjunction with our understanding of debris flow
physical processes.

It is attempted to utilize the NGK-SVM method to derive a series of
data points that collectively delineate the boundary between debris flow
occurrence and non-occurrence. Ultimately, the data points fit a poly-
nomial relationship representing the threshold value. Although the A,
and F, yielded results similar to those proposed by Eq. (15), it is evident
that the polynomial relationship lacks a physical explanation. From this
perspective, when constructing an appropriate model, we should not
over rely on AI methods to generate arbitrary models, but instead
integrate the relationships between parameters to propose a model with
physical significance. In this work, the AI methods offered an objective
and effective approach for parameters selection and uncertainty
assessment, while the thresholds were still determined based on the
physically meaningful interpretations relationships. Overall, human
expertise remains indispensable for comprehending the physical mech-
anisms driving debris flows, thereby enabling more judicious selection
and application of Al technologies. From this perspective, Al can assist
and complement, but not replace traditional methods in constructing
debris flow rainfall thresholds.

It is also crucial to recognize that while integrating multiple pa-
rameters enhances predictive accuracy, it also increases model
complexity, which may impede practical adoption in operational fore-
casting. In practice, an effective strategy for forecasting involves
balancing predictive accuracy with computational feasibility. From the
perspective of machine learning models, identifying the minimal set of
parameters necessary is fundamentally a dimensional reduction process
aimed at simplifying the model while preserving its predictive power.
Besides NGK-SVM, other techniques such as Principal Component
Analysis (PCA) can reduce data dimensions by analyzing the variance of
the original data, thereby mitigating misjudgments caused by outliers or
extreme values (Jolliffe and Cadima, 2016). However, PCA is better
suited for datasets with linear relationships between parameters,
whereas rainfall parameters exhibit non-linear relationships (e.g., E-D
and I-D follow power functions). In contrast, NGK-SVM is more appro-
priate for this application. The optimized model selected by NGK-SVM is
E-D-R,, which introduces only one additional dimension compared to
traditional two-parameter models (E-D, I-D), yet significantly improves
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forecasting accuracy, thus achieving a balance between effectiveness
and usability. It is also worth noting that the forecast also represents a
trade-off among evaluation metrics. Theoretically, an increase in the
false positive rate will inevitably result in a decrease in the false negative
rate. Therefore, the selection of models and threshold identification
should be guided by actual requirements.

The conclusion of this study that R, is the most important rainfall
parameter in the JJG catchment differs from the findings of many pre-
vious studies, most of which considered E to be the principal parameter
and adopted E-D (or I-D) as the most frequently used parameter com-
bination (Zhuang et al., 2015; Guo et al., 2020; Zhang et al., 2020).
However, the results of both A, and F; of the models that consider R,
showed marked improvement in comparison with the results of the E-D
model, which neglects antecedent rainfall. Additionally, the influence of
antecedent rainfall varies substantially with types of debris flows. The
diversity of debris flow formation types and the complexity of the
associated mechanisms further complicate the establishment of rainfall
thresholds.

7. Conclusions

This study derived the optimal rainfall threshold for the debris flow
using Al methods to identify the most important influencing parameters.
Based on 140 rainfall events in the JJG catchment during 2006-2023, of
which 40 triggered debris flows, the metrics of A, and Fo were employed
to evaluate the influence of debris flow initiation time, rain gauge se-
lection, and rainfall parameters in each step of the procedure.

It is suggested that the optimal selection for establishing the rainfall
threshold is to take the rainfall peak time as the debris flow initiation
time, consider the average of rain gauge data from the source region as
the data source, and combine the parameters of event rainfall (E),
rainfall duration (D), and antecedent rainfall (R,). The optimal rainfall
threshold, derived using the E-D-R, model, can be expressed as E =
7.33D%% — 0.23R,.

Rainfall parameter selection has the greatest influence on the rainfall
threshold, and the results in terms of A, improved from 0.54 for the
model using the signal parameter of R,, to 0.66 for the model using the
combination of R, and the D, to 0.81 for the model using the combina-
tion of R,, D and E. Incorporation of further parameters would improve
forecasting precision but inevitably increase the complexity of building
rainfall thresholds.

Compared with the traditional E-D threshold, the Al-derived E-D-R,
threshold presents advantages not only from the perspective of precision
evidenced by marked improvement in terms of both A. and F, but also
from the perspective of its physical meaning, which considers the effect
of both antecedent rainfall and event rainfall.

Due to the “black box” nature of Al methods, they are difficult to
effectively interpret the relationship between rainfall parameters and
the physical significance of the threshold models. However, they can
help with the selection of key parameters and evaluation of the influence
of such selections on the results, thereby assisting in building more
reasonable rainfall thresholds.
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