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A B S T R A C T

Identification of rainfall thresholds remains a key problem in debris flow forecasting. Usually, a rainfall threshold 
is derived through linking rainfall and debris flow occurrence; however, the results are largely inaccurate in 
many cases. In this work, artificial intelligence methods were employed to select the optimal parameters for 
forecasting, and to evaluate the uncertainties of different parameter selections in building rainfall thresholds. The 
optimal procedure considers that a debris flow occurs at the peak of the rainfall event, uses average values of 
rainfall recorded by rain gauges installed within the source area, and incorporates more than three rainfall 
parameters. Selection of the rainfall parameters greatly influences the derived results, and increasing number of 
parameters can enhance the accuracy of predictions. The model incorporating both the antecedent rainfall and 
the event rainfall is proposed and thresholds are derived from the relations of antecedent rainfall and the 
accumulative amount and duration of event rainfall. The thresholds were found to vary with types of debris 
flows, suggesting effects of antecedent rainfall. Despite the “black box” nature of AI methods, the proposed 
approach can help select the optimal parameters and models, reduce the uncertainty in deriving rainfall 
thresholds, and further enhance understanding of the mechanism of debris flow formation.

1. Introduction

Debris flows are triggered primarily by heavy rainfall in catchments, 
and the frequency is expected to increase in response to intensification 
of the hydrological cycle caused by global warming (Gariano and Guz
zetti, 2016). One of the primary objectives of debris flow research is to 
enhance capability of forecasting (Hürlimann et al., 2019), for which 
establishing appropriate rainfall thresholds remains an important goal. 
Such thresholds can be defined either by adopting physical approaches 
that employ a physical models (e.g., Tang et al., 2019; Berti et al., 2020; 
Guo et al., 2021; Hoch et al., 2021), or by employing statistical methods 
(e.g., Caine, 1980; Guzzetti et al., 2007, 2008).

Establishing a threshold is realized by taking rainfall data and debris 
flow occurrence records as “input” and producing the threshold as 
“output” using a generic “model” based on a single equation or a set of 
operations (Martinengo et al., 2021). Many critical thresholds and 
models have been proposed using precipitation parameters, the selec
tion of which is dependent on the characteristics of local rainfall. Un
fortunately, such thresholds are largely inaccurate and have rarely been 
used for warning system (Staley et al., 2013; Nikolopoulos et al., 2014; 

2015). Earlier studies have discussed the uncertainties in rainfall 
threshold, e.g., those linked to the spatial variability and temporal res
olution of data (Nikolopoulos et al., 2014; Marra et al., 2014, 2016; 
Gariano et al., 2020), the choice of reference rain gauges (Peres et al., 
2018; Abraham et al., 2020; Crema et al., 2023), and the differences 
between radar rainfall and rain gauge measurements (Rossi et al., 2017, 
Nikolopoulos et al., 2015). Although procedures have been proposed to 
filter the effects of rainfall estimation uncertainty, overcoming such 
uncertainty remains a challenge, which contributes to the inaccuracy of 
forecasting (Guzzetti et al., 2007; Jakob et al., 2012).

Artificial intelligence (AI) methods have recently been used in 
forecasting, which can help with linking rainfall to debris flow occur
rence (e.g., Mondini et al., 2023), selecting parameters (e.g., Zhao et al., 
2022b), and calculating rainfall thresholds at different exceedance 
probabilities automatically (e.g., Melillo et al., 2018). Despite the “black 
box” in nature, it provides a framework for establishing better-optimized 
thresholds under constrained conditions. In this study, the influence of 
the selections in each procedure and the related uncertainties trans
ferred to the forecasting results were evaluated, and the most important 
rainfall parameters were identified using AI methods. The optimal 
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model and specific rainfall thresholds were proposed for different types 
of debris flows based on actual monitoring data.

2. Case study area and data source

2.1. General introduction of Jiangjia Gully

This study focused on Jiangjia Gully (JJG) in the Xiaojiang River, a 
tributary of the Jinsha River in Southwest China (Fig. 1). The catchment 
covers an area of 48.6 km2 and extends 13.9 km from the divide 
(elevation of 3269 m) to the outlet (1042 m). It is frequently impacted by 
tectonic activities (e.g., earthquakes), and characterized by deeply-cut 
terrain. Approximately 80 % of the exposed rocks are highly fractured 
and mildly metamorphosed, representing an abundant source of mate
rial for debris flows (Guo et al., 2020, 2021).

The catchment can be divided into three climatic regimes: (1) mean 
annual precipitation (MAP) of 850–1200 mm in the headwater area at 
elevation > 2200 m, (2) MAP of 700–850 mm at elevation of 
1600–2200 m, and (3) MAP of 600–700 mm in the area extending from 
the outlet to the elevation of 1600 m. The variations in climate affect the 
distributions of vegetation, rock weathering, slope failure, and flow 
generation, thereby contributing in varying degrees to debris flow 
occurrence (Cui et al., 2005; Guo et al., 2020, 2021). The rainy season 
(May–September) accounts for > 80 % of the MAP and witnesses the 
frequent occurrence of debris flows.

2.2. Data source

JJG has long-term records of rainfall and debris flow. Ten rain gauges 
have been installed, of which four (G1 to G4) are located within the 
major source area (Menqian Gully; Fig. 1). These gauges measure rain
fall using a 0.1-mm tipping bucket, and the data are transmitted in real 
time via the General Packet Radio Service.

Debris-flow parameters include the front and end times of a surge, 
surge numbers, flow velocity, height, and density, all are measured 
manually and recorded at the monitoring section (Fig. 1). The front and 
end time, the duration and surge number were recorded directly. The 

flow velocity was determined by measuring the interval of the front 
passing through two sections separating 200 m in the channel, and flow 
height were estimated by experienced experts. Additionally, samples of 
the flow bodies were collected using a volume-calibrated sampling 
container controlled by electronic devices for density and volume 
sediment concentration analyses. The recorded data, especially the ac
curate time (1-s time scale) of debris flow detection at the monitoring 
section, represent an important basis for this analysis, and the errors of 
the source data are minimized as much as possible.

Rainfall and debris flow data recorded during 2006–2023 were used 
in this work. All 40 of the rainfall events known to have triggered debris 
flows were involved, and an additional 100 other rainfall events (daily 
rainfall range: 6.5–42.8 mm) that occurred during the same period but 
did not result in debris flow occurrence were also considered.

3. Methodology

3.1. Framework for building rainfall thresholds

The data processing includes discretizing continuous rainfall records 
into a series of individual rainfall events and identification of debris flow 
initiation time in the source regions. Identification of relevant rainfall 
parameters (rainfall amount, rainfall intensity, duration, antecedent 
rainfall, etc.) and selection of rain gauges are also important which 
might cause notable uncertainty to the rainfall thresholds (Hirschberg 
et al., 2021).

AI methods were used to analyze uncertainties in data processing and 
to identify the optimal combination of process and parameters, i.e., the 
Nonlinear Gaussian Kernel Support Vector Machine (NGK-SVM), was 
used to determine the optimal combination of processes, and SHapley 
Additive exPlanations (SHAP), was used to explain and verify the results 
of NGK-SVM. Two metrics, Accuracy (Ac) and the F2-score (F2), were 
defined to evaluate the effectiveness of the parameters and selections 
recommended by the AI methods. The methods are explained in detail in 
Section 3.2. A flowchart of the overall procedure is shown in Fig. 2.

Fig. 1. Topographic map and locations of monitoring stations in Jiangjia Gully.
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3.2. Methods for building rainfall thresholds

(1) Nonlinear Gaussian Kernel Support Vector Machine for selecting 
parameters.

NGK-SVM is a type of machine learning model that can be used to 
evaluate the performance of different selections with respect to debris 
flow initiation time, rain gauges, and the rainfall parameters. It can also 
help to analyze the impact on the results of those selections at each step 

of the process.
A traditional linear Support Vector Machine (SVM) can derive a 

threshold with linear form; however, it does not distinguish between 
events occurring or not (Fig. 3a); and a nonlinear SVM can do this by 
providing an ideal threshold. But this might be overfitted and cause 
errors (Fig. 3b). In comparison, NGK-SVM can handle more complex 
nonlinear relationships (Vapnik, 1998; Bishop and Nasrabadi, 2006). 
The input dataset is transformed into a spatial dataset using the Gaussian 

Fig. 2. Flowchart of the process of rainfall threshold establishment. The content within the blue solid boxes refer to the methods of building rainfall thresholds 
(explained in Section 3.2). The content within the grey dashed boxes represent parameters/selections in the process of building rainfall thresholds (explained in 
Section 4).

Fig. 3. Modeling principle of NGK-SVM. (a) threshold with linear form, (b) an ideal threshold using nonlinear SVM, and (c) a curved surface boundary obtained by 
NGK-SVM. Input Space: the original space where data are represented. For example, for a dataset with features such as rainfall and time, the input space is a two- 
dimensional plane where each point represents a combination of rainfall and time. Feature space: the space where data are represented after being transformed or 
mapped from the input space. In the context of NGK-SVM, this transformation is achieved using a Gaussian kernel function. Red and blue dots represent debris flow 
and non-debris flow events, respectively.
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kernel function, and thereby a curved surface boundary is obtained as a 
threshold to distinguish occurrence and non-occurrence events (Fig. 3c). 
However, as a “black box”, the boundary is insufficient to elucidate the 
physical importance between the parameters, and can sometimes be 
excessively intricate as a threshold. Therefore, NGK-SVM is employed 
only to help determine the optimal procedures and parameters, rather 
than to establish a threshold.

(2) SHapley Additive exPlanations for evaluating rainfall 
parameters.

The SHAP method provides a unified framework that explains the 
output of any machine learning model by attributing the prediction to 
the individual feature in a way that is both consistent and interpretable 
(Lundberg and Lee, 2017). It assigns a value to each feature that rep
resents its contribution to the model’s output for a given prediction. It 
was used primarily to assess the importance of rainfall parameters in this 
study, and the value can be calculated as follows: 

ϕi =
∑

S⊆N\{i}

|S|!(|N| − |S | − 1 )!

|N|!
[f (S ∪ {i} ) − f (S)] (1) 

where ϕi is the SHAP value for rainfall parameter i in NGK-SVM model. N 
is the set of all parameters. |N| is the number of parameters in set N. S is a 
subset of parameters without containing parameter i. |S| is the number 
of parameters in subset S. f(S) is the model’s output under the condition 
of subset S and f (S ∪ {i}) is model’s output with parameter i added to 
the subset S.

For example, For instance, consider a scenario where we have three 
rainfall parameters N = {D, E, I}, and the aim to calculate the SHAP 
value for parameter i = D. The possible subsets S of parameters 
excluding parameters D are: S1 = ø, S2 = {E}, S3 = {I}, S4 = {E, I}. Then 
ϕi for every subset is calculated as: 

ϕD, S1
=

0!(3 − 0 − 1)!
3!

[f (S1 ∪ {D}) − f (S1)] (2) 

ϕD, S2
=

1!(3 − 1 − 1)!
3!

[f (S2 ∪ {D}) − f (S2)]

ϕD, S3
=

1!(3 − 1 − 1)!
3!

[f (S3 ∪ {D}) − f (S3)]

ϕD, S4
=

2!(3 − 2 − 1)!
3!

[f (S4 ∪ {D}) − f (S4)]

The SHAP value of parameter D is therefore obtained by accumulating 
through Eq. (3): 

ϕD = ϕD, S1
+ ϕD, S2

+ ϕD, S3
+ ϕD, S4

(3) 

(3) Indicators for evaluating the thresholds
The metrics Ac and Fβ were used as the major indicators (Sokolova 

and Lapalme, 2009) for assessing the quality of the rainfall thresholds: 
Ac for the performance of classification models, and Fβ for the perfor
mance with precision (P) and recall (R).

Specifically, Ac measures the proportion of correctly classified in
stances out of the total number in the dataset: 

Ac = (TP + TN) / (TP + TN + FP + FN) (4) 

where TP (True Positives) and TN (True Negatives) represent the 
number of positive and negative instances correctly predicted, respec
tively, and FP (False Positives) and FN (False Negatives) represent the 
number of negative and positive instances incorrectly predicted as 
positive and negative, respectively.

Fβ evaluates the performance of classification models with consid
eration of both precision (P) and recall (R), which represent false alarms 
and missed detections, respectively: 

Fβ =
(
1 + β2)⋅P⋅R

/(
β2⋅P + R

)
(5) 

P = TP / (TP + FP) (6) 

R = TP / (TP + FN) (7) 

where β is a weight parameter.
The values conventionally used for β are 0.5, 1, and 2 (Witten and 

Frank, 2002). A bigger β value gives a higher weight of R. Because the 
impact of a missed detection is much greater than that of a false alarm in 
debris flow prediction, β was set to 2 in this study. The formula for 
calculation of F2 can be simplified to the following: 

F2 = 5TP / (5TP + 4FN + FP) (8) 

4. Procedure for deriving rainfall thresholds

The key steps in deriving rainfall thresholds include identification of 
rainfall events, determination of debris flow initiation times, selection of 
representative rain gauges and rainfall parameters, and deriving a 
threshold based on the parameters.

4.1. Identification of rainfall events

In most cases, rainfall is a complex signal exhibiting fluctuations and 
irregular behavior on multiple temporal scales. Only after identification 
of a rainfall event can the required rainfall parameters (e.g., amount, 
duration, and intensity) be derived. A common method is to define a 
minimum inter-event duration (Dmin) and maximum inter-event amount 
(Pmax) that discretize continuous rainfall records into a series of indi
vidual rainfall events with rainfall amount less than Pmax in Dmin (Guo 
et al., 2016; Jiang et al., 2021; Hirschberg et al., 2021).

The definitions of Dmin and Pmax vary between catchments and 
depend on local hydrogeological conditions. For small catchments, Dmin 
ranges from 10 min to 6 h and Pmax ranges in 0.1–1.0 mm (e.g., Bel et al. 
2017; Berti et al., 2020; Hirschberg et al., 2021). For the JJG, antecedent 
rainfall events have been distinguished previously as occurring within 3 
h (or more) before rainfall of < 0.1 mm or within 6 h of rainfall of < 0.5 
mm (i.e., Dmin = 3h, Pmax = 0.1 mm; or Dmin = 6h, Pmax = 0.5 mm), 
identified by local meteorological conditions (Guo et al., 2013, 2020; 
Zhuang et al., 2015). Following this criteria, 140 rainfall events were 
determined in the period 2006–2023, of which 40 triggered debris 
flows.

4.2. Identification of debris flow initiation time

Although a debris flow can be identified precisely at a point, the 
exact time of its initiation in the source area remains unknown. The 
initiation time is set as a peak before the debris flow occurrence time, 
with consideration of the debris flow travel time from the source area to 
the monitoring section (e.g., Berti et al., 1999; Arattano and Moia, 1999; 
Tecca and Genevois, 2009; Okano et al., 2012).

Debris flows are generally triggered by rainfall that occurred shortly 
before their appearance. This study considered the highest rainfall in
tensity within approximately 30 min are plausible to trigger the debris 
flow based on the velocity and travel length of debris flows (Guo et al., 
2020). The potential triggering rainfall for debris flows at each gauge 
can be estimated. The following three scenarios for the triggering rain
fall period were established (Fig. 4):

Scenario 1: from rainfall beginning to the end of the event (rainfall 
amount: E1, duration: D1);

Scenario 2: from rainfall beginning to the peak time of the event 
(rainfall amount: E2, duration: D2);

Scenario 3: from rainfall beginning to the end of the peak period 
(rainfall amount: E3, duration: D3).
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4.3. Selection of representative rain gauges

In many cases, rain gauge selection is obligated because installing 
rain gauges in mountainous areas presents substantial challenges, and 
therefore the reference rain gauge is often the only gauge available. 
However, many studies have indicated that relying solely on a single 
rain gauge may not be the optimal approach, particularly in the context 
of localized convective storms. Rain gauges close to the initiation may 
record rainfall that differ significantly from those at the catchment 
outlet due to the spatiotemporal variability of rainfall (e.g., Smith et al., 
2007; Staley et al., 2017; Guo et al., 2021; Crema et al., 2023).

Previous studies suggested that the distance between a debris flow 
source area and a rain gauge station should typically be limited to within 
3–6 km within a mountainous region. For example, it is proposed that 
the distribution of triggering rainfall varies considerably over distance 
of < 5 km in alpine regions (Smith et al., 2007; Panziera et al., 2011). On 
average, it is observed that the depth of the triggering rainfall at a dis
tance of 5 km is approximately 70 % of that estimated at the initiation 
point, whereas the estimation accuracy reduces to 40 % at a distance of 
approximate 6–10 km (Marra et al., 2016; Nikolopoulos et al., 2015).

The records in JJG indicate that rainfall is highly spatially hetero
geneous, e.g., the gauges in Menqian Gully only 2-km apart present 
spatial variation in some events. Uncertainties arise notably when the 
distance between failure locations and rain gauge sites is > 3 km (Guo 
et al., 2021). The following three options were evaluated to select the 
optimal rain gauge:

1) G5, the lowest rain gauge (represents the station at the outlet);
2) G3, one of the rain gauges in the high-elevation headwater region;
3) Gm, the mean values of G1 to G4, representing the average rainfall 

conditions in the source regions.

4.4. Selection of rainfall parameters

Selection of appropriate rainfall parameters is important both for 
building rainfall thresholds and for improving prediction accuracy. The 
rainfall parameters that are generally considered include rainfall in
tensity (I, mm/h), rainfall duration (D, h), and event rainfall (E, mm), 
based on which I-D and E-D are the parameter pairings used most 
commonly for threshold building (e.g., Caine 1980; Aleotti 2004; Guz
zetti et al., 2007, 2008; Guo et al., 2020). This study also considered the 

additional parameters of antecedent rainfall (Ra, mm) and absolute en
ergy (Eabs, mm2) when selecting the optimal triggering factor.

Antecedent rainfall (Ra) is generally calculated as follows: 

Ra =
∑n

i=1
Ri(K)i (9) 

where Ri is the rainfall amount recorded during the preceding n days, i 
indicates the number of days before the triggering rainfall event of the 
debris flow (1 ≤ i ≤ n), and K is an attenuation coefficient of the i-th day 
that represents the role of evaporation; for JJG, the value of K is taken as 
0.8 (Cui et al., 2007).

Generally, n is set to 30 days (e.g., Cui et al., 2007; Tien Bui et al., 
2013; Saadatkhah et al., 2015); however, its value was set to 3, 5, 7, 10, 
15, 21, and 30 days for this evaluation. The increasing rate of the cu
mulative antecedent rainfall was used to assess the impact of additional 
rainfall on soil moisture as the value of n increased. The increasing rates 

Fig. 4. Definition of the relevant rainfall and duration for each of the three scenarios.

Fig. 5. Growth rate of antecedent rainfall.
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of cumulative antecedent rainfall were < 10 % for all the gauges of G1 to 
G5 after n = 15 (Fig. 5). Therefore, n = 15 was used in subsequent 
analysis.

The absolute energy (Eabs) was also introduced to reflect the intensity 
of changes in rainfall magnitude, which is defined as: 

Eabs =
∑m

k=1
R2

k (10) 

where Rk is the rainfall amount (mm), and m the number of sampling 
periods in a rainfall event. For a given duration and total rainfall 
amount, rainfall events characterized by more abrupt variations exhibit 
higher Eabs values and pose a greater potential for triggering debris flows 
(Zhao et al., 2022b).

4.5. Methods for establishing rainfall thresholds

The objective of building a rainfall threshold is likely to define the 
lower boundary for debris flow occurrence based on the selected rainfall 
parameters. Numerous methods have been adopted for drawing rainfall 
thresholds, e.g., regression and frequentist methods, return time calcu
lations, and Bayesian analysis (Brunetti et al., 2010; Peruccacci et al., 
2012; Chen and Huang, 2010; Berti et al., 2012). These methods are 
well-suited for delineating the critical boundary between occurrence 
and non-occurrence of debris flows, particularly when the relationships 
among parameters are ambiguous. AI methods, with their advantages of 
offering objective data analysis, automation, and adaptability to 
evolving data, provide more flexible and adjustable solutions that can be 
optimized and improved as new data become available (Mondini et al., 
2023). However, in this context, given the “black box” nature of AI 
methods, we derived a threshold model incorporating both the power 
relationship of I-D and the linear relationship of E-Ra (Jan and Lee, 2004; 
Jan and Chen, 2005; Caine et al., 1980; Brunetti et al., 2010; Peruccacci 
et al., 2012), based on the optimal parameters selected by NGK-SVM, to 
develop a model with physical significance.

5. Results

Specific identification of the parameters in each step (e.g., initiation 
time, rainfall parameters, and rain gauges) results in various combina
tions of the parameters available for building a rainfall threshold. In this 
case, 279 combinations were produced and evaluated, and the optimal 
combination for establishing rainfall thresholds was determined (Fig. 6). 
Moreover, the influence of each key step was examined, especially the 
importance of the selection of rainfall parameters to the performance of 
the thresholds. The rainfall thresholds were ultimately built based on the 

optimal process and optimal combination of parameters.

5.1. Optimal process for establishing rainfall thresholds

The threshold boundary was obtained by the NGK-SVM and the 
predictive effect was evaluated by Ac and F2. The Ac of 92 % of the 
combinations exceeded 0.50, with a maximum of 0.84 and a mean of 
0.66, suggesting that most of the results were reasonable. However, F2 
showed a range of variation and therefore it was used as the major in
dicator in the following evaluation.

The predictive performances are shown in Fig. 7. Each combination 
provided a certain threshold, and its efficiency was evaluated using the 
F2 metric. The results were classified into six levels: (I) excellent: F2 ≥

0.80, (II) good: 0.80 ≥ F2 > 0.75, (III) satisfactory: 0.75 ≥ F2 > 0.70, (IV) 
mediocre: 0.70 ≥ F2 > 0.60, (V) poor: 0.60 ≥ F2 > 0.50, and (VI) inef
fective: F2 < 0.50. The numbers in the boxes represent the quantity of F2 
at a certain level, and the histograms represent the proportion exceeding 
the satisfactory level (F2 > 0.70).

The performance of these processes and the selection of the param
eters are investigated on the basis of the criteria of exceeding the 
satisfactory (F2 ≥ 0.70) and the highest (I, F2 ≥ 0.80) levels.

In identifying debris flow initiation time, at the level of F2 ≥ 0.70, the 
proportion for Scenarios 1–3 is 30 %, 36 %, and 34 %, respectively, i.e., 
the result for Scenario 2 represents a slightly higher proportion. At level 
I, the performance of Scenario 2 is similar to Scenario 3, each accounting 
for 38 %, and the performance of both is notably superior to that of 
Scenario 1 (23 %). This result suggests that all three scenarios can 
provide predictive performance that is reasonably comparable; howev
er, Scenario 2 offers the best effectiveness.

In selecting rain gauges, at the level of F2 ≥ 0.70, the prediction ef
ficiency of Gm is slightly higher than that of G3 (42 % versus 40 %), and 
the value of each is much better than that of G5 (18 %). Notably, the 
performance of Gm is markedly superior to that of G3 at level I. This 
suggests that the selection of Gm and G3 would be effective, but that Gm 
would provide the optimal predictive effect.

The F2 values of different combinations of parameters (an individual 
parameter and combinations of two and multiple (≥3) parameters) are 
used to evaluate the predictive performance. Combination of multiple 
(≥3) parameters yields much better performance, and individual 
parameter provides the worst results. At the level of F2 ≥ 0.70, combi
nation of multiple parameters presents an evident advantage (64 % at 
level III, 70 % at level II) in comparison with the other two options. 
Specifically, the proportion increases as F2 rises, reaching up to 96 % at 
level I. This suggests that employing a combination of multiple param
eters markedly enhances predictive effectiveness.

Overall, the results of the evaluation are consistent at the levels of 

Fig. 6. Procedure and selections involved in deriving rainfall thresholds.
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both F2 ≥ 0.70 and F2 ≥ 0.80, indicating satisfactory and excellent ex
pectations, respectively. Ultimately, it is suggested that the optimal se
lection for establishing a rainfall threshold is to take the rainfall peak 
time as the debris flow initiation time, consider the average of rain 
gauge data from the source region as the data source, and combine 
multiple rainfall parameters.

5.2. Impact of the rainfall threshold procedure on the results

It is important to evaluate the impact of the procedures, including 
the identification of rainfall period, adoption of rain gauges, and selec
tion of rainfall parameters, on the derived rainfall thresholds. The mean 
values of F2 for the selections in each step were calculated (Table 1), 
which varies with scenarios of initiation-time determination and makes 
little differences (only of 0.01 in F2 value). F2 was improved by 0.04 and 
0.05, respectively by selecting rain gauges of G5, G3, and Gm. And F2 
increased by 0.06 when rainfall parameters were selected from single to 
combination of two and multiple parameters. This indicates that 
changing the selections at different steps influences the results to un
equal extents.

The increase proportion of F2 resulting from individual step selec
tions was used to assess the impacts (Table 2). Altering the debris flow 
initiation time had a minimal effect on F2, contributing only 1.4 % and 
1.5 %. In contrast, the selection of rain gauges significantly influenced 
the results, accounting for an increase of 6.3 % and 7.2 % in F2. Notably, 
the selection of rainfall parameters exerted the greatest influence, 
contributing 9.8 % and 9.0 % to the overall increase in F2. This indicates 
that the rainfall models and parameters remain the most critical factor 
affecting prediction reliability. Furthermore, the selection of rain gauges 
also warrants significant consideration. Data from the lowest station 
introduces a much lower F2 value compared to using the average data of 
rainfall gauges within source regions, which significantly enhances 
forecasting accuracy (0.65 versus 0.74). This indicate that a rain gauge 

located in the lower part of the catchment may not accurately represent 
the actual rainfall conditions that trigger debris flows due to the spatial 
heterogeneity of rainfall.

5.3. Influence of rainfall parameters on threshold predictions

In the following, the order of the importance of the selected pa
rameters, and the influence on the thresholds are examined using SHAP 
values by taking Ac and F2 as the major evaluation indices.

The SHAP values of the selected parameters were calculated (Fig. 8a) 
by taking the rainfall peak time (Scenario 2) as the debris flow initiation 
time and the average of the data from gauges (Gm) as the data source.

For each parameter, a positive (negative) SHAP value reflects posi
tive (negative) impact. A positive impact means that a debris flow occurs 
and a negative impact means that a debris flow does not occur. The 
values of Ra, E, I, and Eabs are all positively correlated with the SHAP 
value, indicating that higher values of Ra, E, I, and Eabs are associated 
with greater likelihood of debris flow occurrence. In contrast, D is 
negatively correlated with the SHAP value, suggesting that larger values 
of D are associated with reduced likelihood of debris flow occurrence.

To express the relative importance of the parameters, the absolute 
average SHAP values for each parameter were calculated using all 140 
samples, indicating the order of importance: Ra > D > E > I > Eabs 
(Fig. 8b), which is broadly consistent with the order based on Ac and F2. 
The SHAP value evaluates the importance of a parameter by increasing 
or decreasing the specified parameter, and Ac and F2 represent the 
predictive effective realized when using this specific parameter. There
fore, the derived order of parameter importance is considered 
reasonable.

It is evident that Ra and D rank as the most important parameters, 
and previous studies have similarly highlighted the relevance of Ra and 
D in building rainfall thresholds (Guo et al., 2013). The role of D is 
particularly distinctive because it exhibits negative correlation with 

Fig. 7. Number and proportion of different selections at each step across different levels.

Table 1 
Mean value of F2 for different selections within the key steps.

Debris flow initiation time Rain gauge Rainfall parameter

0.68 (Scenario1) 0.65 (G5) 0.61 (Single)
0.69 (Scenario 2) 0.69 (G3) 0.67 (Double)
0.70 (Scenario 3) 0.74 (Gm) 0.73 (Multiple)

Table 2 
The increase proportion of F2.

Debris flow initiation time Rain gauge Rainfall parameter

1.5 % (Scenario 1 → 2) 6.2 % (G5 → G3) 9.8 % (Single → Double)
1.4 % (Scenario 2 → 3) 7.2 % (G3 → Gm) 9.0 % (Double → Multiple)
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SHAP on the one hand, and demonstrates exceptionally low Ac (0.44) on 
the other hand. Specifically, the low Ac value attributes to the high false 
alarm rate (P = 0.32), and suggests that D cannot act as the forecasting 
parameter independently. Conversely, the high SHAP value indicates 
that its importance is reflected through combination with other pa
rameters. The most commonly used combinations are E-D and/or I-D, in 
which E and I are usually regarded as directly responsible for triggering 
debris flows. When using E-D to build the thresholds, both Ac and F2 are 
improved to 0.54 and 0.69 (Table 3), representing an improvement of 
25.1 % and 2.8 %, respectively. The combination of D, E, and Ra further 
improves Ac and F2 by 40.3 % and 5.7 % compared with the combination 
of D and E, reaching values of 0.76 and 0.75, respectively. The 
remarkable improvement of Ac emphasizes the important role of D in the 
combinations of parameters through reducing false alarms. Addition
ally, the combinations of D, E, I, and D, Ra, I are comparatively less 
effective than the combination of D, E, and Ra (Ac = 0.60, F2 = 0.69, and 
Ac = 0.73, F2 = 0.73, respectively).

However, if the remaining parameters (I and Eabs) are included in the 
combination, further improvements in Ac and F2 are minimal. For 
example, when adding I to the D-E-Ra combination, Ac increased by only 
0.9 % and F2 increased by 1.7 %. When adding Eabs to the D-E-Ra-I 
combination, there was an increase of only 1.5 % for Ac and 1.0 % for F2. 
Despite the improvement, incorporating additional parameters inevi
tably increased the complexity of building rainfall thresholds. From this 
perspective, the D-E-Ra combination is regarded as the optimal combi
nation for rainfall thresholds.

5.4. Optimal rainfall thresholds

(1) Rainfall thresholds.
The optimal rainfall thresholds for the JJG catchment were then 

derived based on the importance of the parameters. Ra yields the best 
prediction performance, and can acts as a threshold by its own. The 
result is shown in Fig. 9a: 

Ra = C (11) 

where C is a constant.
Then, D is combined with Ra to build a threshold owing to its 

important role in a combination of parameters. An exponential relation 
of D and Ra, proposed as Eq. (12), was used to build a threshold 
following previous research (Guo et al., 2013), and the result is shown in 
Fig. 9b: 

D = α⋅exp(β⋅Ra) (12) 

where α and β are parameters.
Then E is added to the combination and with Ra and D. The relation 

between Ra and E is generally presented as a linear function in the 
expression of the rainfall threshold for debris flow occurrence (Jan and 
Lee, 2004), indicating that antecedent rainfall and event rainfall both 
make substantial contributions in parallel to debris flow occurrences. 
Therefore, the relation is preliminarily proposed as: 

Re = Ra + E (13) 

where Re is the effective rainfall (mm).
The commonly used E-D relation assumes that the threshold curve 

follows a power law (Brunetti et al., 2010; Peruccacci et al., 2012): 

E = aDb (14) 

The relations of D, Ra, and Re are then expressed as in Eq. (15) to 
build a rainfall threshold, and the result is shown in Fig. 9c: 

Re = aDb + Ra (15) 

where a and b are parameters.
The given model was fitted to the debris flow data, followed by 

iterative adjustments of the boundaries (line and/or surface). The model 
parameters were then determined upon achieving the maximum F2- 
score.

The Ra threshold yields a high false alarm rate (P = 0.39) at Ra = 6.8. 
When taking Ra = 11.5, which is associated with the maximum F2 (0.72), 
Ac is 0.54 and three debris flow events were missed detections (Fig. 9a).

The Ra-D threshold improves the forecasting effectiveness, e.g., 22.3 
% in terms of Ac and 5 % in terms of F2 when compared with the 
effectiveness realized using the threshold based only on Ra (Fig. 9b); and 
the D-E-Ra threshold further improves the effectiveness with Ac = 0.81 
and F2 = 0.82. In comparison with the Ra-D model, Ac and F2 are 
improved by 21.5 % and 9.2 %, respectively (Fig. 9c). This threshold is 
preferable not only for its higher effectiveness, but also because of its 
physical relevance in considering both the event rainfall and the ante
cedent rainfall, and its combination with the commonly used E-D and E- 
Ra relations.

Comparing with the E-D model, which results in Ac = 0.36 and F2 =

0.62 (Fig. 10a), the E-D-Ra model improves results remarkably, with Ac 
and F2 increasing by 121.7 % and 32.2 %, respectively.

Fig. 8. SHAP values of different rainfall parameters: (a) SHAP values and (b) absolute averages of the SHAP values, Ac and F2 for each rainfall parameter.

Table 3 
Performance of various combinations of parameters.

Rainfall parameter Ac F2

D 0.44 0.67
D-I 0.54 0.66
D-E 0.54 0.69
D-E-I 0.60 0.69
D-I-Ra 0.73 0.73
D-E-Ra 0.76 0.75
D-E-Ra-I 0.77 0.77
D-E-Ra-I-Eabs 0.78 0.78

S. Zhang et al.                                                                                                                                                                                                                                   Journal of Hydrology 660 (2025) 133440 

8 



(2) Rainfall thresholds for debris flows with different formation type.
Influence of forming types of debris flow has been usually ignored in 

previous studies. In some cases, debris flows act as normal hydrological 
processes supplied by instantaneous shallow soil failures (Type 1), 
whereas other cases involve large landslides and blockage–breaking 
phenomena (Type 2). These can be distinguished by the lag time be
tween the rainfall peak and the flow occurrence, and the ratio of the 
peak discharge of the debris flow to the water flow (Guo et al., 2021).

The thresholds using the E-D and E-D-Ra models for the two types are 
shown in Fig. 10. Type 1 requires a much higher threshold than Type 2. 
The results are evaluated using Ac and F2, as listed in Table 4. Slight 
improvement is achieved for Type 1 when accounting for antecedent 
rainfall. However, the results for Type 2 are improved markedly, i.e., Ac 
and F2 are improved from 0.29 to 0.59 and from 0.42 to 0.66, indicating 
that antecedent rainfall has much greater impact on Type 2, and thus the 
accurate predication of Type 2 is much more difficult.

6. Discussion

Recent studies have indicated that AI can play an important role in 
the assessment and prediction of geohazards (Guzzetti et al., 2008; 
Mondini et al., 2023; Zhao et al., 2022a). This study further sub
stantiates AI’s potential to assist developing rainfall thresholds for 
debris flows in small catchments, including the precise identification of 
debris flow initiation times, the strategic selection of representative rain 
gauges and optimal rainfall parameters, and the quantitative evaluation 
of these selections.

Statistical methods integrated with expert knowledge of debris flow 
formation processes can effectively identify key parameters through 
meticulous manual selection and construct a reasonable predictive 
model (Chien-Yuan et al., 2005; Guo et al., 2020). However, these ap
proaches often incorporate subjective interpretations and assumptions, 
which may introduce bias and uncertainty (Guo et al., 2020). In 
contrast, AI offers significant advantages in processing large and com
plex datasets objectively, uncovering hidden patterns and relationships 
that might not be readily apparent, thereby reducing the uncertainty 
associated with debris flow threshold construction. For instance, 
although antecedent rainfall was recognized in debris flow occurrence in 
this specific catchment, its role in threshold has proven challenging (Guo 
et al., 2013). This study leverages AI to assess the significance of various 
rainfall parameters (including antecedent rainfall), and develops a 
comprehensive threshold incorporating multiple parameters, demon
strating superior accuracy compared to those derived from traditional 

Fig. 9. Rainfall thresholds of the three models: (a) Ra, (b) Ra-D, and (c) E-D-Ra.

Fig. 10. Thresholds for different types of debris flows: (a) E-D. Lines 1, 2, and 3 represent the E-D thresholds for debris flows of type 1, 2, and all events, and (b) D-E- 
Ra. Re1, Re2, and Re3 represent the D-E-Ra thresholds for debris flows of type 1, 2, and all events.

Table 4 
Test results of rainfall thresholds for different types of debris flows and models.

Formation type Parameter Accuracy F2

1 E-D 0.92 0.84
E-D-Ra 0.93 0.85

2 E-D 0.29 0.42
E-D-Ra 0.59 0.66
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empirical methods (“E-D-Ra” vs “I-D”, and 0.76 vs 0.54).
Nevertheless, AI exhibits certain limitations. A primary concern is its 

black-box nature, where models operate in ways that are not easily 
interpreted. Additionally, while one of AI’s strengths lies in processing 
large volumes of data and complex relationships, insufficient or poor- 
quality data can compromise predictive accuracy due to the reliance 
on data integrity. Another consideration is that, despite the inherent 
advantages of any AI method, the selection should be based on the 
specific conditions of the basin and available data, as well as practical 
forecasting requirements. While numerous AI approaches are currently 
available, not all are suitable for this specific scenario. For example, 
deep learning methods such as convolution neural networks (CNN) and 
recurrent neural networks (RNN) have been effectively applied in the 
data analysis of geohazards (e.g., Ghorbanzadeh et al, 2019; Ma and 
Mei, 2021). CNN is more appropriate for processing continuous spatial 
data but is less suitable for rainfall data in this catchment due to the 
relatively sparse distribution of rain gauge networks. RNN, which excels 
at capturing spatiotemporal dependencies in rainfall data, requires 
larger datasets, increasing the risk of overfitting during model training 
when using the limited dataset available. Therefore, these methods may 
be more appropriate for large-scale, long-term spatiotemporal data 
analysis. Given the limited data availability typical of small catchments, 
this study selected a relatively simpler model NGK-SVM, which features 
a more straightforward structure, lower data requirements, and 
enhanced interpretability, making it particularly suitable for this 
context. It is utilized to identify the most critical rainfall parameters and 
the most appropriate forecasting model. Subsequently, SHAP is 
employed to validate the results of NGK-SVM, allowing for further 
interpretation in conjunction with our understanding of debris flow 
physical processes.

It is attempted to utilize the NGK-SVM method to derive a series of 
data points that collectively delineate the boundary between debris flow 
occurrence and non-occurrence. Ultimately, the data points fit a poly
nomial relationship representing the threshold value. Although the Ac 
and F2 yielded results similar to those proposed by Eq. (15), it is evident 
that the polynomial relationship lacks a physical explanation. From this 
perspective, when constructing an appropriate model, we should not 
over rely on AI methods to generate arbitrary models, but instead 
integrate the relationships between parameters to propose a model with 
physical significance. In this work, the AI methods offered an objective 
and effective approach for parameters selection and uncertainty 
assessment, while the thresholds were still determined based on the 
physically meaningful interpretations relationships. Overall, human 
expertise remains indispensable for comprehending the physical mech
anisms driving debris flows, thereby enabling more judicious selection 
and application of AI technologies. From this perspective, AI can assist 
and complement, but not replace traditional methods in constructing 
debris flow rainfall thresholds.

It is also crucial to recognize that while integrating multiple pa
rameters enhances predictive accuracy, it also increases model 
complexity, which may impede practical adoption in operational fore
casting. In practice, an effective strategy for forecasting involves 
balancing predictive accuracy with computational feasibility. From the 
perspective of machine learning models, identifying the minimal set of 
parameters necessary is fundamentally a dimensional reduction process 
aimed at simplifying the model while preserving its predictive power. 
Besides NGK-SVM, other techniques such as Principal Component 
Analysis (PCA) can reduce data dimensions by analyzing the variance of 
the original data, thereby mitigating misjudgments caused by outliers or 
extreme values (Jolliffe and Cadima, 2016). However, PCA is better 
suited for datasets with linear relationships between parameters, 
whereas rainfall parameters exhibit non-linear relationships (e.g., E-D 
and I-D follow power functions). In contrast, NGK-SVM is more appro
priate for this application. The optimized model selected by NGK-SVM is 
E-D-Ra, which introduces only one additional dimension compared to 
traditional two-parameter models (E-D, I-D), yet significantly improves 

forecasting accuracy, thus achieving a balance between effectiveness 
and usability. It is also worth noting that the forecast also represents a 
trade-off among evaluation metrics. Theoretically, an increase in the 
false positive rate will inevitably result in a decrease in the false negative 
rate. Therefore, the selection of models and threshold identification 
should be guided by actual requirements.

The conclusion of this study that Ra is the most important rainfall 
parameter in the JJG catchment differs from the findings of many pre
vious studies, most of which considered E to be the principal parameter 
and adopted E-D (or I-D) as the most frequently used parameter com
bination (Zhuang et al., 2015; Guo et al., 2020; Zhang et al., 2020). 
However, the results of both Ac and F2 of the models that consider Ra 
showed marked improvement in comparison with the results of the E-D 
model, which neglects antecedent rainfall. Additionally, the influence of 
antecedent rainfall varies substantially with types of debris flows. The 
diversity of debris flow formation types and the complexity of the 
associated mechanisms further complicate the establishment of rainfall 
thresholds.

7. Conclusions

This study derived the optimal rainfall threshold for the debris flow 
using AI methods to identify the most important influencing parameters. 
Based on 140 rainfall events in the JJG catchment during 2006–2023, of 
which 40 triggered debris flows, the metrics of Ac and F2 were employed 
to evaluate the influence of debris flow initiation time, rain gauge se
lection, and rainfall parameters in each step of the procedure.

It is suggested that the optimal selection for establishing the rainfall 
threshold is to take the rainfall peak time as the debris flow initiation 
time, consider the average of rain gauge data from the source region as 
the data source, and combine the parameters of event rainfall (E), 
rainfall duration (D), and antecedent rainfall (Ra). The optimal rainfall 
threshold, derived using the E-D-Ra model, can be expressed as E =
7.33D0.39 – 0.23Ra.

Rainfall parameter selection has the greatest influence on the rainfall 
threshold, and the results in terms of Ac improved from 0.54 for the 
model using the signal parameter of Ra, to 0.66 for the model using the 
combination of Ra and the D, to 0.81 for the model using the combina
tion of Ra, D and E. Incorporation of further parameters would improve 
forecasting precision but inevitably increase the complexity of building 
rainfall thresholds.

Compared with the traditional E-D threshold, the AI-derived E-D-Ra 
threshold presents advantages not only from the perspective of precision 
evidenced by marked improvement in terms of both Ac and F2, but also 
from the perspective of its physical meaning, which considers the effect 
of both antecedent rainfall and event rainfall.

Due to the “black box” nature of AI methods, they are difficult to 
effectively interpret the relationship between rainfall parameters and 
the physical significance of the threshold models. However, they can 
help with the selection of key parameters and evaluation of the influence 
of such selections on the results, thereby assisting in building more 
reasonable rainfall thresholds.
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