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Abstract: Systematically determining the
discriminatory power of various rainfall properties and
their combinations in identifying debris flow
occurrence is crucial for early warning systems. In this
study, we evaluated the discriminatory power of
different univariate and multivariate rainfall threshold
models in identifying triggering conditions of debris
flow in the Jiangjia Gully, Yunnan Province, China.
The univariate models used single rainfall properties
as indicators, including total rainfall (Riwt), rainfall
duration (D), mean intensity (Imean), absolute energy
(Eabs), storm kinetic energy (Es), antecedent rainfall
(R2), and maximum rainfall intensity over various
durations (Imax dur). The evaluation reveals that the
Imax_duwr and Eaps models have the best performance,
followed by the Es, Riot, and Imean models, while the D
and R. models have poor performances. Specifically,
the Imax_aur model has the highest performance metrics
at a 40-min duration. We used logistic regression to
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combine at least two rainfall properties to establish
multivariate threshold models. The results show that
adding D or R. to the models dominated by Eabs, Es, Riot,
or Imean generally improve their performances,
specifically when D is combined with Imean or when Ra
is combined with Eaps or Es. Including Ra in the Imax_dur
model, it performs better than the univariate Imax_dur
model. A power-law relationship between Imax_dauwr and
Ra or between Eans and R. has better performance than
the traditional Imean—D model, while the performance
of the Es—R. model is moderate. Our evaluation
reemphasizes the important role of the maximum
intensity over short durations in debris flow
occurrence. It also highlights the importance of
systematically investigating the role of R. in
establishing rainfall thresholds for triggering debris
flow. Given the regional variations in rainfall patterns
worldwide, it is necessary to evaluate the findings of
this study across diverse watersheds.

Keywords: Rainfall threshold; Logistic regression;

Maximum rainfall intensity; Absolute energy;
Antecedent rainfall
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1 Introduction

Debris flows are mixtures of poorly sorted
sediment and water that are gravity-driven and exhibit
behaviors intermediate between rock avalanches and
water floods (Iverson 1997). They occur widely in
mountainous regions and pose a threat to public and
infrastructure safety due to their long run-out
distances and strong destructive power, causing
impact, erosion, and inundation (Dowling and Santi
2014; Kean et al. 2019; Nieto et al. 2021). In some cases,
the significant amount of sediment carried by debris
flow may block the main river and lead to a cascading
disaster (Cui et al. 2013; An et al. 2022). To mitigate
debris flow hazards, early warning systems for debris
flows have been established at the local or regional
level in areas prone to these hazards (Baum and Godt
2010; Osanai et al. 2010; Berenguer et al. 2015; Devoli
et al. 2018). As rainfall is the primary trigger for debris
flow, establishing rainfall thresholds is an effective way
to issue early warnings for debris flows.

Rainfall thresholds are defined as critical rainfall
conditions that, when reached or exceeded, are likely
to result in debris flows (Nikolopoulos et al. 2017).
There are two methods for determining rainfall
thresholds for debris flow: physical and empirical
methods. Debris flows are mainly generated in two
ways. They either originate from shallow landslides
(Iverson et al. 1997) or initiate from erosion of in-
channel sediment by runoff (Kean et al. 2013).
Accordingly, physically based methods define critical
rainfall conditions using hydrological methodologies
to derive critical runoff and/or slope stability analysis
(Berti et al. 2020; Pastorello et al. 2020; Li et al. 2021;
Martinengo et al. 2023). However, because physically
based methods require a large amount of high-quality
input data, empirical methods that determine rainfall
thresholds using historical rainfall and debris flow data
are more commonly used (Hirschberg et al. 2021).

Empirical rainfall threshold models commonly
use the power-law relationship between mean rainfall
intensity (or total rainfall) and rainfall duration (Coe et
al. 2008; Guzzetti et al. 2008; Chang et al. 2021; Liu
2023). Additionally, the maximum intensity over short
durations (usually <60 min) is a good indicator of
debris flow triggering (Staley et al. 2013; Abanc6 et al.
2016; Bel et al. 2017; Tsunetaka et al. 2021; Thomas et
al. 2023). Recent research from the Goulinping
catchment in central China demonstrated that the
absolute energy, defined as the sum of squared values
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of rainfall depth in each sampling period in a rainfall
event, had strong predictive power for debris flow
(Zhao et al. 2022). Moreover, the antecedent soil
moisture conditions impact debris flow triggering in
some watersheds (Bel et al. 2017; Oorthuis et al. 2023;
Siman-Tov and Marra 2023). Therefore, a systematic
study on the power of different rainfall properties and
their potential combinations in distinguishing
triggering from non-triggering conditions of debris
flow (discriminatory power) 1is important for
establishing rainfall thresholds.

When determining the rainfall threshold at the
local or regional scale, uncertainty in rainfall data
location and the record of hazard occurrence time can
limit the accuracy of the threshold (Marra et al. 2016;
Leonarduzzi et al. 2017). In situ debris flow monitoring
has been conducted in many regions worldwide in
recent years, providing valuable, high-quality data for
evaluating empirical rainfall threshold models
(Hiirlimann et al. 2019 and references therein). At
these monitored sites, rainfall data are recorded at 5—
10 min intervals, and debris flow occurrence is
recorded manually or detected by cameras or sensors
(stage gages, geophones, infrasonic wave sensors, etc.).
Although systematic studies on the evaluation of
empirical rainfall threshold models have been
performed at some monitored sites (Staley et al. 2013;
Bel et al. 2017; Hirschberg et al. 2021; Zhao et al. 2022;
Oorthuis et al. 2023), considering that environmental
settings for debris flow are different in different
regions, such work needs to be conducted at more
monitored sites.

Therefore, the purpose of this study was to
evaluate the discriminatory power of different rainfall
threshold models for debris flow triggering in Jiangjia
Gully, a monitored site in southern China. Using
statistically-based skill scores, we first evaluated the
discriminatory power of single rainfall properties and
then evaluated the discriminatory power of multiple
properties. Finally, limitations of the study and some
uncertainties in evaluating the threshold models were
discussed, including the duration considered in
calculating antecedent rainfall, the rainfall temporal
resolution, and the minimum inter-event time selected
in separating continuous rainfall time series into
individual events.

2 General Settings for the Study Area

Jiangjia Gully is located in northeastern Yunnan



Province, with a geographical location of 103°05'46"—
103°13’01” E and 26°13'16”7-26°17'13” N. It has a
drainage area of 48.6 km2 and faces west, with
elevations ranging from a minimum of 1040 m a.s.l. to
a maximum of 3260 m a.s.l. The area’s climate is
mainly affected by the Indian and East Asian summer
monsoon. Mean annual precipitation ranges from 400
to 1000 mm (Cui et al. 2005) and generally increases
with elevation due to orographic effects. Majority of
the rainfall occurs during the monsoon season, from
May to October.

The Mengian Gully and Duozhao Gully constitute
the primary debris flow source area in the Jiangjia
watershed (Fig. 1). However, several check dams were
constructed in the Duozhao Gully during 1979—1982,
which greatly reduced debris flow activity in this sub-
watershed (Zeng et al. 2009). Currently, the 13.2-km?
Mengian Gully is the primary debris flow source area,
with a mean slope of 32° and a maximum slope of 70°.
Shallow landslides are widely distributed in this sub-
watershed. Some landslides directly evolve into debris
flows, while others release sediment to the channel,
which is mobilized by runoff in debris flow events
(Yang et al. 2022).

The trunk channel of the Jiangjia Gully originates
from the confluence of the Mengian Gully and
Duozhao Gully and terminates at the Xiaojiang River.
It is over 100 m wide and 5.5 km long, with the slope
decreasing from 5.1° in the transport zone to 3.7° in the
deposition zone (Cui et al. 2005).

The study area is an active site for debris flows,
making it an ideal location for in situ monitoring. In
1965, the Chinese Academy
of Sciences installed a
monitoring  station, the
Dongchuan Debris Flow
Observation and Research
Station. Staff occupies the
station for 2-3 months
(referred to as the debris flow
observation period
hereafter) during the rainy
season to record the
occurrence  times  and
dynamic properties of the
debris flow surges that are
clearly visible in the
monitoring section of the
trunk channel (Fig. 1). Since
the establishment of the
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station, more than 500 debris flow events have been
recorded, each comprising tens or even hundreds of
individual surges (Guo et al. 2020).

3 Data and Methods

3.1 Debris flow and rainfall data

This study used debris flow events that occurred
from 2007 to 2010 due to the high incidence of debris
flow and the availability of associated rainfall data in
this period. Debris flow observation periods in the four
years included July 1—September 17 in 2007, July 1—
August 31in 2008, July 1—August 31 in 2009, and July
1—September 10 in 2010. A total of 29 debris flow
events were observed in the monitoring section of the
trunk channel, with the time of occurrence listed in
Table 1. During 2007—2010, three tipping bucket rain
gages were available in the Mengian Gully (Fig. 1), with
elevations ranging from 2325 to 2816 m a.s.l. Rainfall
depth was recorded at a 1-min interval with a
resolution of 0.1 mm. Given that the sampling period
of rainfall data was 5—10 min in most local studies
concerning debris flow triggering (Staley et al. 2013;
Bel et al. 2017; Hirschberg et al. 2021; Zhao et al. 2022;
Oorthuis et al. 2023), the 1-min rainfall data were
aggregated into 5-min data for comparison with
existing research. Moreover, the following analysis
used the average rainfall measurements from the three
gages to represent rainfall conditions in the entire
primary debris flow source area.

- 3260m

0 1 2
©1040m kM

Fig. 1 Terrain of the Jiangjia Gully, in Yunnan Province, China.
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Table 1 Occurrence time of debris flow events observed in the monitoring section in the Jiangjia Gully from 2007 to

2010 (mm/dd/yyyy hh:mm)

Number Occurrence time Number
1 07/10/2007 04:20 11
2 07/24/2007 06:30 12
3 07/25/2007 02:36 13
4 07/25/2007 14:24 14
5 07/30/2007 05:40 15
6 08/11/2007 14:27 16
7 08/25/2007 17
8 09/14/2007 01:30 18
9 09/17/2007 15:12 19
10 07/01/2008 15:55 20

Occurrence time Number Occurrence time
07/05/2008 06:26 21 08/11/2008 02:33
07/11/2008 06:48 22 08/17/2008 19:00
07/11/2008 17:45 23 08/04/2009 05:24
07/22/2008 05:00 24 07/06/2010 05:23
08/01/2008 00:15 25 07/17/2010 20:39
08/03/2008 04:50 26 07/22/2010 19:15
08/03/2008 22:35 27 07/24/2010 19:00
08/04/2008 15:37 28 08/05/2010 05:51
08/05/2008 14:04 29 09/10/2010 03:26

08/08/2008 03:02

3.2 Segmentation of the rainfall time series

The first step in defining rainfall conditions that
trigger debris flows was to divide the rainfall time
series into individual events. However, standard
criteria for this process are currently lacking in the
literature (Peres et al. 2018; Jiang et al. 2021). In our
study, we employed a minimum inter-event time
(MIET) approach with persistently smaller rainfall
intensities than a critical value, I. (Zhou and Tang
2014). We estimated I. using potential
evapotranspiration data (Marino et al. 2020) that
showed daily fluctuation between 2 to 6 mm during the
study period. Accordingly, we set I. to 0.3 mm/h.
Previous studies on debris flow torrents have employed
MIET values ranging from 10 min (Coe et al. 2008) to
7 h (Jiang et al. 2021). In our study, we first chose a
moderate value of 3 h for evaluating rainfall threshold
models and then analyzed the influence of MIET on the
evaluation in the discussion section.

3.3 Threshold type and definitions

A total of 189 rainfall events were identified
during the study period using MIET=3 h and I.=0.3
mm/h. These rainfall events were categorized into 28
debris flow-triggering rainfall events (DFTs) and 161
non-triggering events (NDFTs). Since the two debris
flow events occurred during the same rainfall event on
July 25, 2007, the number of debris flow events
exceeded the number of DFTs. For each rainfall event,
we calculated several characteristics, including total
rainfall (Riwt, mm), rainfall duration (D, h), mean
rainfall intensity (Imean, mm/h), absolute energy (Eabs,
mm?2), and the maximum rainfall intensity over
different durations (Imax_du, mm/h), for a total of
twelve durations ranging from 10 to 120 min. Imax_dur
was calculated with the maximum rainfall depth using
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a moving time window. Ea»s was defined as follows

(Zhao et al. 2022):
N
Eqps = Z Ri2 ®
i=1

Here, Ri denotes the rainfall depth measured in
the it sampling period, and N denotes the total
number of sampling periods in a rainfall event. The Eabs
is commonly used in analyzing time series data.
Considering that the storm kinetic energy, Es, is widely
used for estimating soil loss, it was evaluated. It was
computed using the following equation (Kinnell 2023):

N
E = Z R;-0.29(1 — 0.72exp(—0.0821)))  (2)
i=1
Here, I; denotes the rainfall intensity in the ith
sampling period. Furthermore, we evaluated the
antecedent rainfall (R., mm) (Bruce and Clark 1966),
which was determined as follows:

m
Ro= ) K'Riswm ®
i=1

Here, Ri -4n denotes the rainfall depth measured
in the ith 24 h prior to the rainfall event, m denotes the
number of days considered, and k denotes the decay
factor representing the outflow of the regolith (Glade
et al. 2000). The suggested value for k is 0.84 (Bruce
and Clark 1966). In terms of m, values employed in the
literature are usually not greater than 30 (Bui et al.
2013; Garcia-Urquia 2016; Uwihirwe et al. 2020;
Chinkulkijniwat et al. 2022). We first used m=15 in this
study as suggested by Bui et al. (2013) and then
analyzed the influence of m on the performance of the
threshold models in the discussion section.

However, for DFTs, using the entire rainfall time
series from beginning to end may lead to the
overestimation of the rainfall threshold (Abanc) et al.
2016; Bel et al. 2017). Therefore, we only considered



the rainfall time series recorded before occurrence
time of the debris flow event (i.e. time listed in Table 1)
for calculating the rainfall characteristics.

When using a single rainfall property, X, to define
debris flow-triggering conditions (hereafter referred to
as the univariate threshold model), the threshold type
was as follows:

X=c 4)

Here, c denotes a constant.

When multiple rainfall properties were considered
in the rainfall threshold (referred to as the multivariate
threshold model), we first utilized a linear combination
of these properties:

n
Z a;X;=c (5)
i=1
Here, a; denotes the linear coefficient of the ith
variable, X;, and n denotes the number of variables.
Additionally, we incorporated the power function of
each property by multiplying them to account for the
power-law relationship between different properties

(e.g., Imean and D).
[ [xe=c ©)
i=1

The coefficients in the multivariate threshold
models were determined using the logistic regression
method, an effective tool for classification problems. In
this method, the probability of debris flow occurrence
(p; where p=o0 for NDFTs and p=1 for DFTs) was
expressed as a Sigmoid function of the linear
combination of the explanatory variables:

n
n(72=) = a0+ Y a, @
1_p i=1

Here, Yi=X; for Eq. (5) and Yi=In(X:) for Eq. (6).
Linear independence between variables is required in
the logistic regression model. Thus, we calculated the
Pearson correlation coefficient (CC) for each pair of
rainfall properties, and only properties with CC
between -0.5 and 0.5 were used to establish
multivariate threshold models.

3.4 SKkill scores for performance evaluation

We employed the receiver operating characteristic
(ROC) analysis to evaluate the performance of
different threshold models (Staley et al. 2013; Bel et al.
2017; Oorthuis et al. 2023). First, we assigned different
thresholds (i.e., different values of ¢ in Egs. (4), (5),

J. Mt. Sci. (2024) 21(6): 1799-1813

and (6)) to the model to be evaluated. For each
threshold, the rainfall events were classified into four
groups: true positives (TP; DFTs with conditions above
the threshold), true negatives (TN; NDFTs with
conditions below the threshold), false positives (FP;
NDFTs with conditions above the threshold), and false
negatives (FN; DFTs with conditions below the
threshold). Second, we calculated two skill scores,
probability of detection (POD) and probability of false
detection (POFD), for each threshold:

TP

- 8

PO = Tp 1N ®
FP

POFD = 5 (9)

Third, we constructed an ROC curve by plotting
the POD against the POFD. We used the area under the
ROC curve (AUC) to evaluate the performance of
different threshold models, where a value of 0.5
indicates no improvement over random guessing and a
value of 1.0 indicates perfect discrimination. Finally,
we determined the optimal threshold by maximizing
the true skill statistic (TSS; Allouche et al. 2006), also
known as the Hanssen—Kuipers discriminant
(Hanssen and Kuipers 1965), which is expressed as
follows:

TSS = POD — POFD (10)

The TSS of the optimal threshold was also used as
an evaluation metric of the different threshold models.

4 Results

4.1 Performance of univariate threshold
models

Fig. 2 depicts the AUC and maximum TSS of the
univariate threshold models and Table 2 lists the
optimal thresholds. Models using Eavs, Es, Or Imax_dur @S
an indicator performed better than the other models,
with AUC and maximum TSS values greater than 0.90
and 0.70, respectively. Among them, the Imax_somin and
Imax_somin models had the maximum TSS (0.815) while
the Imax 4omin model also had the maximum AUC
(0.938). Therefore, the Imax_somin model exhibited the
best performance. Additionally, the Eaws model
performed better than the Es model. Riot and Imean also
exhibited strong ability in distinguishing triggering
from non-triggering conditions of debris flow, with
AUC and maximum TSS greater than 0.87 and 0.68,
respectively. Furthermore, the Rit model performed
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Fig. 2 Performance metrics, including (a) the area under the ROC curve (AUC) and (b) maximum true skill statistic

(TSS), of different univariate threshold models.

better than the Imean model in terms of
AUC, whereas the opposite was true
regarding TSS. However, using D or R. as
an indicator resulted in considerably
poorer performance, particularly in terms
of FP. Specifically, the AUC of the Ra
model was 0.538, indicating that it was
only slightly better than random guessing.

4.2 Performance of multivariate
threshold models

Fig. 3 depicts the correlation matrix
between different rainfall characteristics.
Ruiot, Imean, Eavs, Es, and all Imax_aur variables
were found to be linearly dependent,
whereas D and R. were generally
independent of these variables, despite the
linear dependence between D and Riot.
Therefore, D, Ra, and both were combined
separately with Rtot, Imean, Eabs, Es, and each
Imax_aur variable to establish multivariate
threshold models using Egs. (5) and (6),
resulting in a total of 96 multivariate

models that were established and evaluated.
Fig. 4 presents the performance metrics of the
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Fig. 3 Pearson correlation coefficient (CC) between different rainfall
characteristics.

multivariate threshold models. Models using Eq. (6)
generally outperformed those using Eq. (5); therefore,



Table 2 Optimal threshold and its corresponding skill
scores for each univariate threshold model

Optimal %
threshold TP TN FP FN POD POFD TSS AUC
Riot=11.4 22 144 17 0.786 0.106 0.680 0.901
D=2.83 19 109 52 0.679 0.323 0.356 0.698
Tmean=2.36 25 128 33 0.893 0.205 0.688 0.876
Eas=5.03 25 140 21 0.893 0.130 0.762 0.934
Es=1.85 23 143 18 0.821 0.112 0.710 0.920

Imax_10min=12.00 25 140 21
Imax_2omin=7.70 27 133 28
Imax_3omin=6.73 27 137 24
Imax_4omin=5.65 27 137 24
Imax_somin=4.68 27 134 27
Imax_60omin=4.00 27 133 28
Imax_7omin=3.42 27 131 30
Imax_8omin=3.05 27 129 32
Imax_gomin=2.73 27 127 34
Imax_100min=3.44 25 137 24
Imax_nomin=2.23 27 124 37
Tmax_120min=2.05 27 123 38 1
R.=19.09 24 52 109 4
Note: *AUC is the skill score of the corresponding
threshold model; true positives (TP)/false negatives (FN)
mean DFTs with conditions above/below the threshold;
true negatives (TN)/false positives (FP) mean NDFTs
with conditions below/above the threshold; probability of
detection (POD) and probability of false detection
(POFD).

0.893 0.130 0.762 0.929
0.964 0.174 0.790 0.931
0.964 0.149 0.815 0.936
0.964 0.149 0.815 0.938
0.964 0.168 0.797 0.937
0.964 0.174 0.790 0.936
0.964 0.186 0.778 0.933
0.964 0.199 0.766 0.931
0.964 0.211 0.753 0.930
0.893 0.149 0.744 0.929
0.964 0.230 0.734 0.927
0.964 0.236 0.728 0.926
0.857 0.677 0.180 0.538

H W R R R HE R RO WWO O

they were further compared with univariate threshold
models. For models dominated by Riot Or Imean, after
adding both D and R, they significantly outperformed
the univariate models. They also performed better
when only D or R. was included, where including D
outperformed including Ra for Imean while including D
showed similar performance with including Ra for Riot.
Compared to models that only used Rit Or Imean,
including both D and Ra resulted in an increase in AUC
and TSS exceeding 0.05 and 0.10, respectively. For
models dominated by Eas or Es, after adding Ra, they
performed much better than the univariate models,
with the increase in AUC and TSS greater than 0.02 and
0.05, respectively. They also performed better than
models that considered D and had slightly poorer

performance than models that considered both D and R..

Finally, the model dominated by Imax_dur and included Ra
performed approximately with the one that included
both D and R.. Compared to the univariate Imax_dur
models, the inclusion of R. averagely increased AUC by
0.024 and TSS by 0.067.

In the multivariate models using Eq. (6), the Eans—
Ra, Imax_4omin—D—Ra, and Eas—D—Ra models had the
maximum AUC (0.961) while the Imax 2omin—Ra and
Imax_somin—Ra models had the maximum TSS (0.865).

J. Mt. Sci. (2024) 21(6): 1799-1813

However, all Imax_dur—Ra and Imax_dur—D—Ra models had
good performances, with AUC>0.95 and TSS>0.795.
The Es—D-R. model also had approximate performance
(AUC=0.960, TSS=0.812). These models outperformed
the widely used Imean—D or Rit—D models (AUC=0.926
and TSS=0.739) and their R.-included type (i.e., Imean—
D—-R: or Riwi—D-R. models; AUC=0.953 and
TSS=0.790). Considering that including D in the
Inax_duw—Ra, Eabs—Ra, and Es—R. models brought about no
or marginal improvement in models’ performances, we
recommend the Imax_duw—Ra, Eabs—Ra, and Es—Ra. models
for debris flow early warnings in the study area. Among
the Imax_dur—Ra models, the Imax somin—Ra and Imax_somin—
R, models had the best AUC (0.960) while the
Imax_20min—Ra and Imax_somin—Ra models had the best TSS
(0.865). The Imax 4omin—Ra model had the second best
AUC (0.959) and TSS (0.852). Therefore, it was selected
as a typical example of the I'max_dauw—Ra model. The optimal
thresholds of the Imax qomin—Ra, Eabs—Ra, Es—Ra models
and the traditional Imean—D model are shown in Fig. 5.

These results reveal the importance of R. in
determining the triggering conditions of debris flow in
the Jiangjia watershed. A detailed investigation of the
classification results of the optimal Imax_somin—Ra, Fabs—
R., and Es—R. thresholds are shown in Table 3.
Generally, including R. in the threshold could decrease
FP or increase TP while avoiding a substantial increase
in FP. Compared to the best Imax_4omin threshold that
resulted in 24 FP, the Imax_4omin—Ra threshold reduced
FP to 18; correspondingly, the POFD decreased from
0.149 to 0.112. The best Eas threshold yielded 25 TP
and 21 FP. In comparison, the Eans—Ra threshold
increased by 2 TP, resulting in an increase in the POD
by 0.071, while the increase of 3 FP led to a small
increase in the POFD (0.019). Compared to the best Es
threshold, the Es—R. threshold increased by 2 TP and
decreased by 4 FP; therefore, the TSS was increased
from 0.710 to 0.806.

5 Discussion

5.1 The best duration for calculating the
maximum intensity

Compared to Riot, Imean, Eabs, and Es, Imax_dur
demonstrated stronger discriminatory power between
triggering and non-triggering rainfalls in the study
area. This finding is consistent with previous research
(Bel et al. 2017; Hirschberg et al. 2021; Tsunetaka et al.

1805



J. Mt. Sci. (2024) 21(6): 1799-1813

(a) AUC
0.0 0.2 0.4 0.6 0.8 1.0

Rmt

 — L
R A A A A A R
Eahs i i i i i i i i i i i i i i i i i i i : 1

ES

N
N
N
N
N
N
N
N

N
N
N
N
N
N

N
N

A S S S - .

’rmaxi] Omin

’rmaxill Jmin

l

77 7 7 7 77 7 77

[max_3 Omin

l
l

N
N
N
N
N

11]13?&740[]‘&11

i

A

VA S S S .

Imuxj Omin

Tnax_60min

A " — —— 4

1 max_70min

N
N
N

77 7 7 7 7

1 max_80min

N
N
N

Imax 90min

l

77 7 7 7 7

N
N
N

il

'Imaxj 00min

77 7 7 7 7

"maxj 10min

N
N

VA S A S A 4

"maxil 20min

l

(b) TSS
0.

[=}
(=}
()
o
~
o
o
<
o0
[=}

R e
Ee =
N }

VA S A — 4 L |

1
R ===—= === === === ==

{

1, max_20min

1
77 7 77 z—7—7]

] max_30min

VA S —_—

Imax_—ﬂ)min

l

VA S S S S S .

]maxj()min

[maxiﬁﬂmin

W A S —_ —— -

]mux:i()min

77 7777

Tnax_80min

77 7 7

]muxj)()min

I

N
N
N
N
N

Imax 100min

I

77 7 7 7 7

1’max 110min

I

VA S S A S 4

llmax 120min

I

Il Univariate model [__| Adding D by Eq. (5) Adding D by Eq. (6) [___] Adding R_by Eq. (5)
Adding R by Eq. (6) [l Adding D and R, by Eq.(5) [ Adding D and R_by Eq. (6)

Fig. 4 Performance metrics, including (a) AUC and (b) maximum TSS, of the multivariate threshold models established
by separately adding D, Ra, or both D and Ra to the models dominated by Riot, Imean, Eabs, Es, O Imax_dur-

2021). However, in the present study, the Imax_dur model
performed best at a 40-min duration, which is longer
than the best durations reported in other studies,
ranging from 10 to 30 min (Staley et al. 2017;
Hirschberg et al. 2021; Tsunetaka et al. 2021; Oorthuis
et al. 2023). This inconsistency is likely due to
differences in the drainage area of the investigated
sites (Table 4). Durations of 10—20 min were reported
in the Ichino-sawa torrent and the Rebaixader
catchment, which are smaller than 1 km?, and in a
regional study of post-fire debris flow torrents ranging
from 0.02 to 8 km2 In the 4.83-km2 Illgraben
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catchment, the best duration was 30 min.

Runoff is crucial in triggering debris flow in these
watersheds (Cannon et al. 2008; Berger et al. 2011;
Imaizumi et al. 2019; Guo et al. 2020; Pastorello et al.
2020). Therefore, debris flow occurrence is likely
attributed to a critical discharge at the debris flow
initiation site in each watershed. Since peak discharge
occurs when all segments of the drainage area
contribute to the runoff of the site, the best duration
may be related to the time of concentration (7T¢) at the
debris flow initiation site, Te_ini. Considering that T at
the outlet of the watershed, Tc_out, is the upper limit for
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Table 3 Comparison of the classification results associated with the optimal thresholds of the Imax_somin—Ra, Eabs—Ra,
Es—Ra models, and the corresponding univariate models

Optimal threshold
Imax740min=5.65
Imax_40minRa0'67=55.81**
Eabs=5.03
EabsRa27=229.40
Es=1.85

EsR.%85=29.79

TP IN
27 137
27 143
25 140
27 137
23 143
25 147

FP
24
18
21
24
18
14

FN

Wl B W = =

Note: *AUC is the skill score of the corresponding threshold model.

**: For multivariate threshold models that included two explanatory variables, the original form of the threshold,
Xa1Xa2 = ¢, was expressed with a more concise form, X;X$ = ¢’, where a = a,/a; and ¢’ = ¢V/%,

POD

0.964
0.964
0.893
0.964
0.821
0.893

POFD TSS

0.149 0.815
0.112 0.852
0.130 0.762
0.149 0.815
0.112 0.710
0.087 0.806

Table 4 Best duration for calculating the maximum intensity in different research

Study site
Ichino-sawa torrent

Post-fire debris flow torrents

Rebaixader catchment
Illgraben catchment
Mengian Gully

Best duration (min)

10
15
15-20
30
40

Drainage area (km?) Source

0.22 Tsunetaka et al. 2021
0.02-8 Staley et al. 2017

0.53 Oorthuis et al. 2023
4.83 Hirschberg et al. 2021
13.20 This study

AUC*
0.938
0.959
0.934
0.961
0.920
0.947
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Te_ini, the best duration is expected to be <T¢_out. To test
this assumption, we used five empirical formulas
(Tropeano et al. 1996) suitable for steep mountain
catchments to estimate Tc_out for the Mengian Gully.
Tc out Was not estimated in other watersheds due to a
lack of morphometric parameters. The results are
listed in Table 5. The estimated Tc_out ranged from 40
to 109 min in the Mengian Gully; the best duration was
the lower limit of this range. It indicates that the
estimated Tc ow: has a potential to be used for
calculating the maximum intensity when the initiation
location is unknown.

Table 5 Time of concentration at the outlet (Tc_out, h) of
the Mengian Gully estimated with different empirical
formulas

Formula (Tropeano et al. 1996) Te_out
Te_out=(4A°5+1.5L)(Hm—H,) °5/0.8  1.04 (62 min)
Te_out=0.396Ls°-5(AL250-55,~0-5)0-72 1.58 (95 min)

Tc out=0.055Ls7°5
Tc_out=6L2/3(Hmax—Ho) -1/3
Tec out=0.127A0-55705

0.66 (40 min)
1.82 (109 min)
0.87 (52 min)

Note: A=13.20 km? is the basin area, L=6.42 km is the
headwater basin length, Hmax=3002 m is the basin’s
maximum elevation, Hn=2366 m is the average basin
elevation, Ho=1526 m is the basin outlet elevation,
$=0.283 is the average channel gradient, and sv=0.624 is
the average slope gradient.

5.2 Duration for calculating antecedent rainfall

The results of this study indicated that threshold
models performed better when R. was included, although
the univariate R. model had poor performance. This
suggests that high antecedent soil moisture is not
required for the initiation of debris flow in the Jiangjia
Gully. However, high antecedent moisture levels decrease
the triggering rainfall conditions, including Rrot, Imean, Eabs,

0.98

| (@)
0.96 A 4 & s o
/
1 j’ */*/* * *
.
S 09444 .
*x—*
~ /
*
0.92 4
0.90 T T T T T T
0 5 10 15 20 25 30
Duration (day)
Imnxj[)mm_Ra model

—A— E . —R, model

Es, and Imax_dur. This is consistent with findings in Chalk
Cliffs (Coe et al. 2008) and the Rebaixader catchment
(Abanco et al. 2016; Oorthuis et al. 2023). Antecedent
moisture facilitates debris flow in the study area in two
ways. First, the increase in soil moisture decreases the
shear strength of the soil (Hu et al. 2011), making the soil
mantle more prone to landslides (Hawke and McConchie
2011) and the bed sediment more prone to erosion
(McCoy et al. 2012). Second, higher antecedent moisture
means a smaller soil water deficit and lower infiltration
rate in the watershed, both leading to higher runoff ratios
(Penna et al. 2011; Schoener and Stone 2019).

R. has been widely used to determine the rainfall
threshold for landslides, with durations within 30 days
commonly considered (Bui et al. 2013; Garcia-Urquia
2016; Uwihirwe et al. 2020; Chinkulkijniwat et al.
2022). The duration used in this study was 15 days. To
investigate the influence of duration on the
performance of the Imax_somin—Ra, Eabs—Ra, and Es—Ra
models, R. was calculated with different durations
ranging from 1 to 30 days, and the corresponding AUC
and TSS of the three models were computed (Fig. 6).
For the Imax_somin—Ra and Eaps—Ra models, the AUC and
TSS increased with duration when the duration was <7
days, while they remained approximately stable when
the duration was >7 days, reaching maximum values at
15 and 10 days, respectively. For the Es—R. model, the
AUC and TSS stabilized when the duration was greater
than 20 and 15 days, respectively. This is because later
rainfall had a greater weight in Eq. (3). Specifically,
when R. was calculated with a duration of 30 days
(denoted as Ra 304), rainfall that occurred within 15
days prior to the rainfall events averagely contributed
29.02 mm to Ra_30d (31.19 mm) and accounted for 93%.
Accordingly, the Pearson correlation coefficient
between R. calculated with durations >15 days and

0.90
(b)

0.85 - o

7 0.80 ‘/:»—A "

0.754 %

Duration (day)
—*— E~R, model

Fig. 6 Performance metrics, including (a) AUC and (b) maximum TSS, of the Imax_somin—Ra, Eabs—Ra, and Es—Ra models

when different durations were used for calculating R..
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R._30a was high (>0.99) (Fig. 7). Therefore, durations
>15 days are recommended for computing R. in
regions with similar environments to the study area.

40 T T T
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Fig. 7 Mean value of R. for all the 189 rainfall events
when different durations were considered and Pearson
correlation coefficient (CC) between Ra calculated with
different durations and the 30-day Ra.

Influence of the rainfall

resolution and MIET

5.3 temporal

The temporal resolution of rainfall used in this
study was 5 min. However, ground-based rainfall
measurements used to determine regional rainfall
thresholds usually have temporal resolutions of =1 h
(Brunetti et al. 2018; Jiang et al. 2021; Rana et al.
2022). Since the sampling interval affects the values of
rainfall characteristics and might further influence the
relative performance of different threshold models, the
performance of the Imean—D, Imax_dur—Ra, Eabs—Ra, and
Es—R. models were reevaluated at the 1-h interval. The
results are listed in Table 6. In this case, 1 h was used
to calculate the Imax dquwr. The AUC and TSS of the
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T
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Imax_in—Ra model were 0.959 and 0.848, respectively,
which were similar to the scores of the Imax_somin—Ra
model at the 5-min interval. The Eans—Ra model had
slightly better performance at the 1-h interval, with an
increase of 0.016 in the TSS. In contrast, the TSS of the
Es—R. model decreased by 0.023. Nonetheless, these
three models still outperformed the Imean—D model.

Table 6 Performance of the threshold models using 1-h
interval rainfall data

Threshold model AUC Optimal tl}reshold

TSS c a
ImeanD?=c’ 0.929 0.713  4.39 0.46
Imax_mRa%=c' 0.959 0.848 31.81 0.62
EapsRa%=c' 0.959 0.831 2886.60 1.22
EsRa%=c’ 0.945 0.783 23.54 0.83

Note: For multivariate threshold models that included
two explanatory variables, the original form of the
threshold, X;*X,? = c, was expressed with a more concise
form, X, X¢ = ¢/, where a = a,/a; and ¢’ = ¢/,

The selection of MIET impacts the separation of
rainfall events and may influence the relative
performance of different rainfall threshold models. To
investigate the effects of MIET on the performances of
rainfall thresholds in the study area, different MIET
values ranging from 1 to 12 h were used to divide the 5-
min interval rainfall data. The performance of the
Imean—D, Imax_gomin—Ra, Eabs—Ra, and Es—Ra. models using
different MIET values is illustrated in Fig. 8. Generally,
the performance metrics of these models decreased
with MIET when MIET was <7 h, while they had
relatively small fluctuations when MIET was >7 h. The
Imax_gomin—Ra  and  Eas—Ra. models consistently
performed better than the Imean—D model, while the Es—
R. model had a moderate performance.

1.0
1 (b)
0.9 1
—e
._‘ ——
0.8 .\_k\*:. e Ay
% ™ \*\& /
- L - ‘\*k
-
0.7 1 l\._./\‘./.
0.6
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MIET (h)

—a— E, —R, model —*— E—R, model

Fig. 8 Performance metrics, including (a) AUC and (b) maximum TSS, of the Imean—D, Imax_qomin—Ra, Eabs—Ra, and Es—
Ra models when different MIET values were used to separate the rainfall time series.
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5.4 Comparison with rainfall threshold models
in other monitored watersheds

Systematic evaluation of the discriminatory power
of various rainfall properties has been conducted in
some monitored watersheds and the best threshold
model has been proposed, as listed in Table 7. These
studies demonstrated the strong ability of Imax_dur in
indicating debris flow occurrence. In the Goulinping
catchment, Ea»s was a good indicator for debris flow
triggering (Zhao et al. 2022). Results in the Jiangjia
Gully were consistent with existing research. In the
Réal Torrent and the Goulinping catchment, the
combination of Riot With Imax_dur Or Eabs could improve
model performance (Bel et al. 2017; Zhao et al. 2022).
In the Jiangjia Gully, compared with the univariate
models, adding Riot to the models dominated by Imax_dur
or Eas had no improvement for the strong correlation
between these variables. In addition, as a proxy of
sediment recharge, the number of days elapsed since
the end of winter (na) also had relevance to occurrence
of debris flow in the Réal Torrent. In the other
watersheds, only variables related with rainfall were
studied and na was not considered.

The role of R. or soil water content (SWC) was
investigated in these watersheds except the Goulinping
catchment. SWC was not important in the post-fire
debris flow torrents, which may be attributed to the
relatively porous hillslope soil and bed material, where
it was difficult to sustain high water contents (Kean et
al. 2011). In the Illgraben catchment, although R. did
not appear to be a significant precondition for debris
flow triggering, it affected the magnitude of debris flow
(Hirschberg et al. 2021). In the Réal Torrent, the
Rebaixader catchment and our study, R. or SWC
played an important role in debris flow occurrence (Bel
et al. 2017; Oorthuis et al. 2023).

5.5 Limitations of the study

In this study, rainfall properties that were included
in multivariable threshold models were selected based
on the correlation matrix between various rainfall

properties (Fig. 3). Since the correlation matrix is
influenced by rainfall patterns, the correlation matrix
in other regions will be different from the one in the
Jiangjia Gully for different rainfall patterns. Therefore,
some rainfall threshold models that were not
recommended in this study may have good
performance in other regions. For instance, the
correlation coefficient between Riot and Imax_6omin Was
0.85 in the study area, indicating a positive
relationship. Compared to the univariate Imax_6omin
model that had AUC=0.936 and TSS=0.790, the
inclusion of Rit had no improvement in this study,
with AUC=0.931 and TSS=0.753 when Eq. (5) was
used and AUC=0.936 and TSS=0.790 when Eq. (6)
was used. However, the Imax_m—Rit model performed
well in the Wenchuan earthquake-affected region
(Jiang et al. 2021). Therefore, results in this study still
need to be tested in other watersheds. This is the major
limitation of the present research.

Another limitation is associated with uncertainty
in the rainfall data used in this study. Debris flows
observed in the monitoring section of the Jiangjia
Gully in the study period were primarily triggered in
the Mengqian Gully for presence of check dams in the
Duozhao Gully. Therefore, rainfall data monitored in
the Mengian Gully had stronger ability in
distinguishing  triggering from non-triggering
conditions of debris flow in the Jiangjia Gully (Yang et
al. 2023). Thus, they were used in this study. However,
debris flows might also be triggered in the Duozhao
Gully in the study period, and some of them might be
observed in the monitoring section. In this case, using
rainfall data monitored in the Mengian Gully may lead
to weaker representativeness of the triggering rainfall.
However, these cases were rare.

Moreover, this study only evaluated the
discriminatory power of different rainfall threshold
models. Stability of the coefficients in the threshold
model is also important for an operational warning
system. Therefore, a more systematical study that also
considers the stability of the coefficient needs be
performed in further research.

Table 7 Best rainfall threshold models in different monitored watersheds

Best threshold model
I max_dur=C

Study site

Post-fire debris flow torrents
Réal Torrent

Illgraben catchment
Goulinping catchment
Rebaixader catchment
Jiangjia Gully

Eavs=c1 and Riot=C2
I maxfdur=(lSWC+b

alImaxfsmin+a2Ra+a3Rtot+a4nd=C
Random forest model using Imean, D, Imax_3omin

Imax_4ominRaa= C1 0r EabsRab= Ca

Source

Staley et al. 2013

Bel et al. 2017
Hirschberg et al. 2021
Zhao et al. 2022
Oorthuis et al. 2023
This study

Note: SWC is soil water content, and na is the number of days elapsed since the end of winter.
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6 Conclusions

We evaluated the performance of different
univariate and multivariate rainfall threshold models
for identifying triggering conditions of debris flows
that occurred during 2007—-2010 in the Jiangjia Gully,
Yunnan Province, China, where the univariate models
used single rainfall properties as indicators and the
multivariate models used at least two rainfall
properties as indicators.

Among the univariate models, the Imax_dur and Eabs
models performed the best, followed by the Es, Riot, and
Inean models. The D and R. models had poor
performances for substantial FP. The results
reemphasized the important role of the maximum
intensity over short durations in debris flow
occurrence. They also demonstrated the strong ability
of Eans in identifying debris flow-triggering conditions.
In the Imax_dur models, which used different durations
for calculating the maximum intensity, the best
performance was obtained at a 40-min duration, which
is longer than durations reported in other watersheds
for a larger drainage area of the study watershed.

Although using D or R. alone had minimal
influence in distinguishing triggering from non-
triggering rainfalls, adding these indicators to the
models dominated by Eabs, Es, Rtot, O Imean generally
improved the discriminatory power of these models,
specifically when D was combined with Imean or when
Ra was combined with Eabs or Es. Including R. in the
Inax_auwr model performed better than the univariate
Imax_auwr model. The selection of MIET influenced the
performance of Imean—D), Imax_dur—Ra, Eabs—Ra, and Es—Ra
models. Nonetheless, the Imax dw—Ra and Eas—Ra
models always had better performance than the
traditional Imean—D model, while the performance of
the Es—Ra. model was moderate.

Although high antecedent soil moisture is not
required for the initiation of debris flow in the Jiangjia
Gully, our evaluation showed that including R. in
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