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Rainfall in mountainous watershed presents high spatial variability due to elevation effects, and this introduces
uncertainty in forecasting hydrological hazards such as water floods and debris flows. This study investigated the
spatial variation of rainfall in a small watershed with a network of 10 rain gauges. A rainfall-elevation rela-
tionship was established based on data from 52 rainstorm events, which provides a method for rainfall estimation
within the watershed. Result indicated that lower errors of interpolation occur when the rainfall amount is high,
and that it is more difficult to estimate rainfall in high-elevation regions. Rain gauges become less representative
when the distance between gauges is >3.0 km. The spatial variation of rainfall suggests that the gauge at the
lowest elevation, or a single gauge within the source region, shows non-negligible errors with regard to calcu-
lating water flood discharge and identifying rainfall thresholds for debris flows. This study contributes to the
understanding of event rainfall distribution and its impact on hydrological hazard forecasting in a small
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mountainous watershed.

1. Introduction

Rainfall is the most common inducing factor of hydrological hazards
(e.g., water floods and debris flows) in mountainous watersheds with
areas of <50 km? and large elevation differences (Wieczorek, 1996;
Jakob et al., 2012; Hungr et al., 2014; Cui et al., 2018). Forecasting of
such events is achievable through physical-based simulation (e.g., hy-
drological modeling) and/or empirical methods (e.g., statistical rainfall
thresholds), both relying on rainfall as input. However, the rainfall data
is highly uncertain due to measurement errors, systematic errors of in-
terpolations, and intrinsic errors of rainfall randomness; these errors
propagate through the model and directly impact the accuracy of fore-
casting. Therefore, a good knowledge of the uncertainty of rainfall data
is essential for a correct forecasting of hydrological hazards.

Obtaining accurate rainfall data in mountainous region represents a
major challenge (Krajewski et al., 2000, 2003). Radar and satellite
remote sensing can provide nearly complete qualitative distributions of
rainfall at high temporal and spatial resolutions, and both have become
viable techniques for supplementing rainfall information (e.g., Fabry
et al., 1994; Bradley et al., 2002; Kirschbaum et al., 2012; Rossi et al.,

2012; Marra et al., 2014; 2016). However, the coverage in many
mountainous regions is poor. Thus, in most cases, ground-based rain
gauge networks remain the only viable option for measurement of local
rainfall (Habib et al., 2001). Unfortunately, the density of a rain gauge
network is often too low to provide sufficient data. Therefore, estima-
tions are often produced based on data recorded at neighboring gauges
(e.g., Aleotti, 2004; Godt et al., 2006; Brunetti et al., 2010; Berti et al.,
2012). In such cases, huge discrepancies can arise, the implications of
which were clearly illustrated by the catastrophic debris flows in
Zhouqu (China) on August 8, 2010, which caused 1765 fatalities. In the
event, a gauge 16 km from the headwaters recorded 96 mm of rainfall,
whereas the gauge at the outlet recorded only 3 mm (Hu et al., 2010; Cui
et al., 2013). Such results exemplify the scale of the variation and un-
certainty associated with rainfall in mountainous watersheds.

The spatial distribution of rainfall is complicated, and influenced by
many orographic parameters (e.g., elevation, slope, aspect, shadowing,
and curvature) and climatic factors (e.g., wind) (e.g., Goovaerts, 2000;
Lloyd, 2005; Tobin et al., 2011), but it is hard to identify the major
factors responsible for the high spatial variability of rainfall in small
watershed (Dore et al, 1982). For a better understanding and

* Corresponding author at: Key Laboratory of Mountain Hazards and Surface Process/Institute of Mountain Hazards and Environment, Chinese Academy of Sci-

ences, Chengdu 610041, China.
E-mail address: aaronguo@imde.ac.cn (G. Xiaojun).

https://doi.org/10.1016/j.jhydrol.2021.126049

Received 8 June 2020; Received in revised form 21 January 2021; Accepted 27 January 2021

Available online 5 February 2021
0022-1694/© 2021 Elsevier B.V. All rights reserved.


mailto:aaronguo@imde.ac.cn
www.sciencedirect.com/science/journal/00221694
https://www.elsevier.com/locate/jhydrol
https://doi.org/10.1016/j.jhydrol.2021.126049
https://doi.org/10.1016/j.jhydrol.2021.126049
https://doi.org/10.1016/j.jhydrol.2021.126049
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jhydrol.2021.126049&domain=pdf

G. Xiaojun et al.

characterization, the local key influencing parameters should be
considered. For instance, Spreen (1947) found that elevation alone ex-
plains 30% of the seasonal variance of rainfall while the combination of
altitude, slope, exposure and orientation explained 88%. Basist et al.
(1994) found slope gradient, orientation, elevation and exposure as the
best mean annual precipitation predictors for 10 mountains. Strong
winds may also redistribute the precipitation facilitating largest
amounts in the valleys (Ye et al., 2004; Yang et al., 2005). Among the
parameters, elevation can be considered as the most important because
its influence remains constant, while that form others varies with events
(Hevesi et al., 1992a; 1992b;; Goovaerts, 2000; Tobin et al., 2011). In
most cases, on a given slope, rainfall typically increases with elevation,
which is commonly called the orographic effect (e.g. Hutchinson, 1968;
Vuglinski 1972; Hibbert, 1977; Smith 1979; Kumari et al., 2017); and
generally, local rainfall increases with elevation in linear form, which
has proved an acceptable approximation in many situations (e.g. Hib-
bert, 1977; Houghton, 1979; Obsorn, 1984; Buytaert et al., 2006).
However, the characteristics of the relationship can vary appreciably
from hillslope to hillslope. This make it difficult to obtain a usable
relationship, unless rainfall stations are grouped into regions that con-
trol for such factors (Basist et al., 1994; Kumari et al., 2017). Although
systematic uncertainties exist for measuring the rainfall amounts by
gauges with regard to many factors, they can be reduced significantly by
long-term and dense rainfall monitoring networks (Ye et al., 2004;
Zhang et al., 2004; Xu et al., 2013; Ma et al., 2015; Kumari et al., 2017).

Objectives of rain gauge network design include effective rainfall
measurement and determination of the effects of rainfall uncertainty to
other hydrological variables (Bras et al., 1988). Gauge distribution
significantly influences rainfall estimation. It has been suggested that
only densely-distributed gauges are adequate for forecasting of rainfall-
induced floods and debris flows (Haberlandt, 2007; Wagner et al.,
2012). Interpolation based on geostatistical theory, which relies on a
robust anisotropic variogram to define the spatial rainfall structure, is
useful for rainfall estimation (e.g., Goovaerts, 1997; 2000; 2013; Price
et al., 2000; Lloyd, 2005; Hancock and Hutchinson, 2006; Tobin et al.,
2011; Wagner et al., 2012; Ly et al., 2011; Krivoruchko, 2012; Krivor-
uchko and Gribov, 2019). Unfortunately, the validation approach de-
pends on the number and distribution of gauges, which are generally
inadequate in data-sparse watersheds (Hattermann et al., 2005).
Therefore, both the design of an effective monitoring network and
choice of an interpolation method require insight into the variability and
uncertainty of rainfall (Goovaerts, 2000; Buytaert et al., 2006). Several
studies have proposed techniques to address the rainfall estimation
uncertainty and its effects on hydrological hazard prediction (Jakob
et al., 2012; Nikolopoulos et al., 2014, 2015). Most related studies have
been conducted on long-term (i.e., monthly/daily) rainfall over large
regions rather than on short-term rainfall events in small watersheds.
The distinction is important because rainfall is more heterogeneous and
pronounced over short timescales, and the degree of uncertainty is
influenced primarily by the density of gauges (Nikolopoulos et al.,
2014).

In general, despite the complxity of mechanisms for spatial variation
of rainfall, orographic variables are undoubtedly the tangible agencies;
among which the elevation is the most conspicuous (Lloyd, 2005; Tobin
et al., 2011). Therefore, in this study we analyzed the relationship be-
tween rainfall and elevation in a small mountainous watershed with
large elevation difference, and proposed a rainfall estimation method. In
addition, we assessed the estimation errors associated with elevation,
rainfall amount, and gauge density using rainfall interpolation methods.
Finally, the uncertainty of using different rainfall input data for fore-
casting floods and debris flows was evaluated to determine the effect of
the representativeness of rain gauges.

2. Study area

Water floods and debris flows occur frequently and are widely
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distributed throughout the basin of the Xiaojiang River, a tributary of
the Jinsha River in Southwest China (Fig. 1). This semiarid mountainous
area has high tectonic activity, abundant fragmented rocks, and large
elevation differences. It is known for its poor ecological conditions and
environmental disasters such as landslides, debris flows, soil erosion,
and land debrisization. In addition to the geological and topographic
conditions that are favorable for debris flow development, the moun-
tains stimulate the occurrence of hydrological hazards by providing
abundant rainfall and runoff for soil movement in headwater regions.
Forecasting of the hazards is difficult because of the spatial variation of
rainfall.

The Jiangjia Gully is located within the Xiaojiang River. It has an
area of 48.6 km?, and it extends from its drainage divide at an elevation
of 3269 m to its outlet at 1042 m. It has been frequently impacted by
tectonic activities (e.g., earthquakes) and has deeply cut sloping terrain
over a large elevation range. This valley is known for frequent debris
flow occurrences and long-term rainfall observations (Cui et al., 2005;
Guo et al., 2013, 2016). Many studies have examined the mechanisms
and triggering conditions of debris flows (e.g., Li et al., 2003, 2004,
2008; Cui et al., 2005, 2007). We selected it for this case study because
of its dense rain gauge distribution (Fig. 1).

The valley can be divided into three climatic regimes. (1) A sub-
tropical, dry, and hot valley climate extending from the outlet up to
1600 m, where the mean annual precipitation (MAP) is 600-700 mm,
mean annual temperature (MAT) is 20 °C, and mean annual evaporation
(MAE) is 3700 mm. (2) A subtropical, semiarid climate between 1600
and 2200 m, where MAP is 700-850 mm, MAT is 13 °C, and MAE is
1700 mm. (3) A humid climate above 2200 m, where MAP is 850-1200
mm, MAT is 7 °C, and MAE is 1350 mm. The variations in precipitation,
temperature, and evaporation affect both vegetation distribution and
rock weathering, and thus contribute in varying degrees to the occur-
rence of debris flows (Cui et al., 2015; Guo et al., 2020). To date, debris
flows are mainly formed in the Mengian Gully, which is the northern
branch (Fig. 1).

Ten rain gauges (R1-R10) have been installed in the watershed
(Fig. 1). Based on monitoring data (2006-2017), the rainy season
(May-September) accounts for approximately 85% of MAP. For
example, at gauges R1 and R9, rainfall during the rainy season accounts
for 83.0% and 89.7% of the total annual rainfall, respectively. The
maximum daily rainfall amounts recorded at R1 and R9 are 53.5 and
63.1 mm, respectively, accounting for 9.4% and 10.0% of the total
annual rainfall. Torrential rainstorms in summer are the main factor
contributing to the frequent occurrence of debris flows.

3. Data source and methods
3.1. Data source

The length of the data records of the 10 rain gauges extends for more
than a decade. The lowest-placed gauge (R1) is at the elevation of 1351
m in the downstream section (Fig. 1), whereas the others are all in the
headwater regions at various elevations, as listed in Table 1. Each rain
gauge measures real time rainfall using a 0.1-mm tipping bucket and the
data are transmitted via the General Packet Radio Service. Rainfall
events are separated with 6 h dry hiatuses (Restrepo-Posada and
Eagleson, 1982). The rainfall amount of the event rainfall was therefore
cumulated quantitatively from the beginning to the end of the rainfall.
To identify the spatial characteristics of event rainfall within the
watershed, we assessed the rainfall data recorded during 2006-2017
and selected 52 events in which the rainfall amount exceeded 10.0 mm
at all gauges.

3.2. Methods

(1) Statistical methods
Two pairs of rain gauges were employed (R9 (2831 m) and R10
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Fig. 1. Location, elevation, and rain gauge distribution of the Jiangjia Gully in Southwest China.

(2892 m), and R4 (2316 m) and R5 (2334 m)) to analyze the correlation between the 52 rainfall events. The Kolmogorov-Smirnov (K-S)

and differences of rainfall data recorded at two gauges at similar normality test (Gauthier and Hawley, 2007), a special goodness-of-fit
elevation. hypothesis test, was used to determine whether two datasets differed
The Pearson correlation coefficient (Kendall and Stuart, 1963), a significantly. The K-S test has the advantage of making no assumption

common statistical method, was used to reflect the level of similarity about the distribution of the data (i.e., it is nonparametric and
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Table 1

Elevation of rainfall gauges within the Jiangjia Gully watershed.
Date R1 R2 R3 R4 R5 R6 R7 R8 R9 R10
Elevation (m) 1351 1636 2243 2316 2334 2592 2748 2818 2831 2892

distribution free).

(2) Rainfall interpolation

To investigate the uncertainty of gauge selection, we used three
interpolation methods that included deterministic and probabilistic
methods: inverse distance weighting (IDW), Empirical Bayesian Kriging
(EBK), and Spline. Overall, the interpolated value of rainfall at a location
is given by the weighted summation of known rainfall estimates (i.e.,
rain gauge data). Such geostatistical theories and methods are used
widely used for rainfall interpolation (Lebel et al., 1987; Cressie, 1991;
Goovaerts, 1997; 2000;; Webster and Oliver, 2007; Bargaoui and
Chebbi, 2009; Krivoruchko, 2012; Krivoruchko and Gribov, 2019).

(3) Rain gauge network configurations

We numerically generated rain gauge networks to investigate the
effect of gauge densities and locations on interpolation results. Rain
gauge networks were generated using tools in ArcGIS (ESRI, 2011). The
geometric center of the watershed was set as the center of a square grid,
having side lengths of I. Rain gauges were set at each grid intersection,
with no consideration of topographic constraints on installation.
Essentially, the real rainfall values from real gauges corresponding to the
locations of the simulated gauge locations were used to mimic sampling
of the rainfall field from a gauge network of the same density. The dis-
tance between two neighboring gauges were defined as L. In this case, the
number of rain gauges (i.e., intersections) corresponded to sampling
densities of I set to 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 km, respectively.

The gauge density as a key factor in analyzing rainfall estimation
uncertainty was characterized by the distance between simulated
gauges. Typically, the selection of mimic gauge locations relied on field
experience, especially in low density cases. However, we found that
rainfall interpolation results were similar for several configurations.

(4) Water flood and debris flow forecasting

A combination of the SCS-CN loss method for runoff yield and the
kinematic wave method for slope and channel routing calculation was
applied to evaluate the uncertainty of flood and debris flow forecasting
(SCS, 1985; Mishra and Singh, 2003; Lumbroso and Gaume, 2012; Capra
etal., 2018; Guo et al., 2020). The key parameters in the methods are the
CN value and the slope and channel roughness coefficients: n; and ny,
respectively. The parameters can be identified via lookup tables (SCS,
1985). In this work, the CN value for the watershed was set to 75, and
coefficients n; and ny were set to 0.3 and 0.08, respectively; these values
were held constant for each rainfall event and rainfall input scenario.

The intensity—duration (I-D) relationship for rainfall threshold is
used for debris flow forecasting. Here, the duration (D) is defined as the
period from the beginning of the rainfall event to onset of debris flow,
and rainfall intensity (I) is considered as the mean intensity during
period D (e.g., Caine, 1980; Guzzetti et al., 2007; 2008; Badoux et al.,
2012; Berti et al., 2012).

4. Elevation influence on rainfall within the study area

Elevation, as mentioned above, is generally considered the most
important topographic variable (Hevesi et al., 1992a; 1992b;; Goo-
vaerts, 2000; Tobin et al., 2011). In the study area, although most of the
gauges are located in headwater regions, the local landform is open flat
ground. Therefore, as the effects of the other factors are difficult to
quantify, the effect of elevation was primarily investigated.

4.1. Rainfall variation with elevation

The mean rainfall amount for each event was determined by aver-
aging the values from all gauges. The values of each specific gauge were

also averaged for all events. These data showed that R1 had the lowest
mean rainfall (18.4 mm), while R7 had the highest mean rainfall (31.9
mm).

Examination of these results also showed that rainfall varied mark-
edly with elevation. In almost all cases, and for both mean and
maximum values, rainfall increased with elevation (Fig. 2). The eleva-
tion of each gauge was normalized by dividing its elevation by that of R1
(1351 m) to avoid the exponent parameter becoming too small. Then the
relationship between mean event rainfall values and normalized eleva-
tion appears as:

R, = 8.9 R? =0.7902 €))

where R, is the mean event rainfall amount (mm) and h is the
normalized elevation.

It was also found that the value of each rainfall was related to
elevation, and that 39 of the 52 events (75%) present exponential re-
lationships with R? > 0.5 (Fig. 3; based on 10 events). This suggests that
Eq. 2 could be used to approximate the spatial variation of rainfall in
most cases:

R = aée” 2)

where R is the rainfall amount (mm) and h is the normalized elevation;
and coefficient a (range: 4.50-35.83) and exponent b (range:
0.255-0.857) define the rainfall variance.

4.2. Differences between gauges at similar elevations

We assessed the correlation between the rainfall measured at similar
elevations using data from two pairs of gauges: R4 (2316 m) and R5
(2334 m), and R9 (2831 m) and R10 (2892 m). The horizontal distance
between the gauge pairs was 4.1 (R4-R5) and 1.8 km (R9-R10). The
expectation (E) and standard deviation (o) of the rainfalls are listed in
Table 2. The Pearson correlation coefficient (P) was used to evaluate the
similarity of the rainfall for each pair. At a significance level of 0.01, P
was 0.857 and 0.789, respectively for R4-R5 and R9-R10, indicating
high similarity. Event rainfall for each pair is presented on 1:1 scatter-
plots in Fig. 4a and 4b. The average deviation was 18.8% and 7.5%,
respectively, indicating a certain degree of variance.

The results of the K-S normality test, which was used to analyze the
difference between the two data series, indicated no significant

® Average event rainfall °
284 —— Linear relation
=3 - - -- Exponential relation
E
— ) =
g 24 .
©
= R =96h+43
B 5
3 204 R™=0.7266
o .
>
2 ’
o R — 89 e()-H:
< 164 ';'
. R"=0.7902
T T T T T 5 T T d T
1.0 d2 1.4 1.6 1.8 2.0 2.2

Relative elevation

Fig. 2. Relationship between mean rainfall and elevation in the study area.
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Fig. 3. Data showing the exponential relationship between rainfall amount and
gauge elevation.

Table 2
Expectation and standard deviation values for the 52 rainfall events at selected
gauges.

Rain gauge E c n P

R9 40.9 14.1 49 0.857
R10 41.9 15.1 50

R4 37.1 14.9 27 0.789
R5 40.6 18.0 46

n is the number of rain events recorded.

difference. The high correlation and non-significant difference between
the mean rainfall amounts for the two gauge sets, where each compo-
nent shared the same elevation with its pair, indicate that evident effect
of the elevation to the rainfall variation.

4.3. Rainfall estimation based on elevation

The rainfall value at a specific location can be calculated by weighted
summation of rainfall records. However, such interpolation relies on a
dense network of rain gauges, which is typically unavailable in moun-
tainous regions. If strong correlation exists between rainfall and topo-
graphic variables, then the variables could be used for rainfall
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estimation (Lloyd, 2005; Tobin et al., 2011).

Recorded data indicat that the coefficient a is linearly related to the
minimum rainfall (i.e., Ry, as represented by record at R1), and exponent
b reflects the increase in rainfall with elevation (Fig. 5):

a=mR| —n 3
b =clna +d 4

where m, n, ¢, and d are constant coefficients . In this study, the values of
the coefficients were set as ¢ = 1.53,d = 0.32, m = 0.69, and n = 1.04.

Combining Egs. 2, 3, and 4, the relationship between rainfall amount
and gauge elevation can be expressed as

R = e (mRy — n)™ 'Ry = (0.69R, — —1.04)R; 32! 5% (5)
where R is the rainfall at a specified location in the watershed (mm), Ry
is the rainfall collected at rain gauge R1 (mm), and h is the elevation
relative to R1. Using Eq. 5, the rainfall value at each point within the
watershed was calculated based on the R1 value for each rainfall event.
The errors associated with this method are shown in Fig. 6.

In Fig. 6, the error of the EBK method is used as the x-axis, and it can
be seen that the error of both the IDW and the Spline methods is close to
that of the EBK method. The average errors of the IDW, EBK, and Spline
methods are 2.0%, 1.1%, and 1.5% at R4, respectively, and 8.5%, 7.5%,
and 8.6% at R6, respectively. In most cases (22 of 26 events at R4 and 37
of 45 events at R6), the value calculated using Eq. 5 was an over-
estimation compared with the recorded rainfall amount. The errors of
7.9% and 17.8% at R4 and R6, respectively, are much larger than those
of traditional interpolation methods. This is expected and acceptable
because this estimation depends on a single gauge (i.e., the lowest
gauge, which is generally located at the watershed outlet) rather than on
a dense rain gauge network.

Approximately, the higher the rainfall value at R1, the lower the
absolute error values at both R4 and R6 (Fig. 7). If an error of 40% were
acceptable for rainfall estimations at both R4 and R6, then the rainfall
recorded at R1 should be > 15.0 and > 17.5 mm, respectively. Given
that R6 has a longer record than R4, a 17.5-mm rainfall threshold is
adopted as the condition on R1 for Eq. 5. It ensures that the higher the
rainfall amount, the stronger the relationship between rainfall and
elevation, and thus the better the estimations.

5. Uncertainties of rainfall interpolation and effects of gauge
distance

Density and location of ground-based rain gauges are crucial factors

80
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Fig. 4. Comparison of event rainfall amounts recorded at similar elevations: (a) R4-R5 and (b) R9-R10.
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that require careful consideration, as they significantly affect the accu-
racy of rainfall-induced hazard parameter calculations (Duncan et al.,
1993). The distance between gauges, which reflects the representative
range of each gauge, requires careful evaluation (Bradley et al., 2002;
Villarini et al., 2008, 2014).

5.1. Rain gauge network configurations

We numerically generated rain gauge networks to investigate the
effect of gauge density and location on the interpolation results. The
distance (I) between two gauges was set separately as 0.5, 1.0, 1.5, 2.0,
2.5, 3.0, 3.5, and 4.0 km, which represent different gauge densities and
numbers, as shown in Fig. 8.

Rainfall values were assigned to each gauge based on the rainfall
distribution within the watershed. Therefore, for each rainfall event, we
used Eq. 5 to calculate the rainfall amount at each simulated gauge and
at the watershed center point (CC). Subsequently, rainfall was interpo-
lated over the entire watershed using the IDW, EBK, and Spline methods.
Interpolation results for each real gauge were compared with back-
ground values calculated using Eq. 5, which provided reference values
for the analysis.

5.2. Uncertainty of rainfall interpolation

Progressively denser rain gauge networks are belived to produce
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Fig. 6. Errors of inverse distance weighting (IDW), Spline, and Eq. 5 vs. the
error of Empirical Bayesian Kriging (EBK).

increasingly accurate rainfall interpolation results. In this case, the
interpolation errors were presented with a gauge separation distance of
0.5 km, i.e., the densest configuration. The results for four gauges (R1,
CC, R4, and R10 at elevation of 1351, 1838, 2316, and 2892 m,
respectively) are shown in Fig. 9, based on which the following obser-
vations can be made.

(1) The absolute error of any of the three methods was no higher than
6%, suggesting high accuracy, as if the data used for the inter-
polation were abundant.

(2) The error property (positive or negative) for each interpolation
method was the same for each gauge. In general, the mean error
was negative, indicating that rainfall was underestimated by all
interpolation methods and in all rain gauge density scenarios,
except at R1. This also indicates that on average rainfall was
overestimated by Eq. 5.

(3) Lower errors of interpolation occurred when rainfall amounts
were high. This pattern was consistent for all interpolation
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methods, although the error rate varied among the different
methods.

The relationship between estimation error and gauge elevation was
investigated under each gauge configuration. As the IDW, EBK, and
Spline methods showed similar tendency with elevation, only the results
obtained using IDW are discussed here. All errors were arithmetically
averaged by the absolute values of the real errors, and they are shown by
the black line in Fig. 10.

Error values were small at low elevations and the mean error
increased with elevation. Over the elevation range 1300-1900 m (R1,
R2, and CC), errors were 1.4%-10.2% with average of 4.9%-6.3%. Over
the elevation range 2000-2400 m (R3-R5), errors were 2.7%-10.8%
with average of 6.1%-9.2%. Errors increased to 3.7%-19.4% (average:
10.4%-15.6%) over elevation range 2600-2900 m at the headwater
region of the watershed (R6-R10). These results imply that it is more
difficult to estimate rainfall in high-elevation regions.

5.3. Effective distance for rain gauges

Rain gauge density might cause significant bias in estimation of
rainfall thresholds for debris flows (Nikolopoulos et al., 2014). Although
the interpolation errors were different for all three studied methods,
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their tendencies were similar. As such, the results obtained using the
IDW method are used to illustrate the effect of gauge density on inter-
polation error.

Inclusion of more rain gauges within a network might be expected to
produce more accurate interpolation results (Nikolopoulos et al., 2014);
however, this was not the case in this study. Instead, the interpolation
errors reflected the variation of gauge configuration. It can be seen that
the error lines associated with each rainfall event are parallel (Fig. 11,
taking R1 and R2 as examples). The maximum and minimum errors for
each rainfall event for all 10 rain gauges are shown in Fig. 12. In most
cases, the errors changed smoothly over gauge distances of 0.5-2.5 km
but changed abruptly for distances of 2.5-3.0 km. This is apparent in the
error data for the average watershed rainfall shown in Fig. 13. Although
the errors decreased as the grid length increased over the 0.5-2.5-km
range, the error variations are very small (—1% to — 5%). In contrast, the
errors increased abruptly at the 3.0-km grid length, leading to less
reliable results. These findings suggest that rain gauge placement should
be considered carefully when the horizontal distance between gauges in
a network is >3.0 km.

6. Effect of uncertainties of gauge selection on hydrological
hazard forecasting

The quality of rainfall data significantly affects the accuracy of hy-
drological modeling and hazard forecasting, but dense gauge network is
impractical in most mountainous regions. At best, in most circum-
stances, the arrangement consists of one gauge at the outlet, or inside the
watershed if there is an established local village. This deficiency pre-
sents a serious challenge because data from one gauge might not be
sufficiently representative of the watershed, especially in regions with
high spatial variation in the distribution of rainfall. Thus, the following
section discusses the uncertainties caused by the selection of different
gauges, from the perspectives of water flood discharge simulation and
the determination of rainfall thresholds for debris flow forecasting.

6.1. Influence of gauge selection on hydrological simulation

In the study region, water floods are doubly problematic, because in
addition to causing their own catastrophic damage, they are also
responsible for triggering debris flows. We selected eight rainfall events
to investigate the influence of rain gauge selection on peak discharge
and total water quantity measurements by setting up different inputs for
hydrological simulations. These eight events represented a range of
varying rainfall amounts and durations.

Four rainfall input scenarios were designed that consisted of inter-
polation based on the following: I) all 10 rain gauges, II) one of the rain
gauges in the high-elevation headwater region (R9), III) the lowest
station in the Jiangjia Gully main channel (R1), and IV) rainfall calcu-
lated using Eq. 5. Among them, scenario I is regarded as the most ac-
curate input; thus, results from the other scenarios were compared with
this scenario. A combination of the SCS-CN loss method for runoff yield
and the kinematic wave method for slope and channel routing calcula-
tion was applied. The CN value for the watershed was set to 75, and this
was held constant for each rainfall event and rainfall input scenario. The
simulation results are shown in Figs. 14 and 15.

Results for scenario III (using R1 at the lowest elevation to represent
rainfall conditions throughout the entire watershed) show that the water
flood was seriously underestimated in all cases, with non-referential
results. In contrast, the results for scenario II (using R9 in the head-
water region) show that the water flood was overestimated in most cases
(7 in 8 cases). This not only demonstrates that rainfall increases with
elevation but also highlights the uncertainties caused by inappropriate
rain gauge selection. However, when using the estimation of Eq. 5 as the
rainfall input (scenario IV), the errors were much smaller. The peak
discharge simulation errors were in the range of [—14.0%, 23.5%],
while the errors of the total water flood amount are in the range of
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Fig. 8. Maps of the study area showing simulated rain gauge distributions for various grid lengths.

[—11.8%, 16.4%]. These results exhibit acceptable accuracy, especially
considering the difficulty of obtaining rainfall data in mountainous
areas.

6.2. Effect of uncertainties of gauge selection on rainfall thresholds for
debris flows

The I-D relationship is a common approach for identification of
rainfall thresholds in debris flow forecasting (e.g., Caine, 1980; Guzzetti
et al., 2007; 2008). The determination of rainfall thresholds is often

performed based on long-term historical rainfall data. To estimate the
magnitude of the errors in threshold identification caused by the rainfall
estimation, we used the 52 rainfall events, 19 of which triggered debris
flows.

The rainfall was selected from the following: (1) the most repre-
sentative gauge, which was determined based on detailed analysis of the
rainfall and the monitoring of the debris flow processes. As debris flow
initiation in the source regions was not monitored, when a debris flow
appeared at the monitoring section, the rainfall process was investigated
based on gauges located in the source regions. In particular,
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consideration was given to both the time lag between debris flow
appearance and peak rainfall, and the differences in the rainfall process
between the gauges (Guo et al., 2020); (2) R1, located at the mouth of
the watershed; (3) R7, at elevation in the source areas, about 5 km from
the catchment center (Fig. 1); and (4) the rainfall estimated using Eq. 5.
This examination considers both the influence of elevation and gauge
distance. In essence, the rainfall thresholds were compared with the
actual I-D threshold to evaluate the effectiveness of using rainfall data

from different sources.

The threshold was identified as I = 11.23 D~%71° by selecting the
most representative gauge. The false alarm and false negative rates,
defined as percentages of the total numbers, were 34% and 0%,
respectively, and the results obtained for the other three scenarios were
compared with these results. It has been suggested that debris flows in
this watershed are most likely triggered during rainfall events with
duration of < 16.8 h (Fig. 16). Therefore, considering the traditional
duration used in forecasting by the China Meteorological Department,
rainfall durations of 1, 12, and 24 h were assumed and the 1-h, 12-h, and
24-h rainfall amounts required to trigger debris flows were estimated.
The results are shown in Fig. 17.

When using R1 as the rainfall information source, the threshold was
identified as I = 8.28 D~%75!, with false alarm and false negative rates of
47% and 0%, respectively, and the required 1-, 12-, and 24-h rainfall
amounts were evidently underestimated. When using the rainfall from
R7, the threshold was I = 15.81 D %748 the false alarm and false
negative rates were 24% and 32%, respectively, and the error of the 1-h
rainfall amount was overestimated by as much as 40.8%. However, for
the rainfall calculated using Eq. 5, the rainfall threshold was identified
asI=12.98 D%7% which is closer to the real threshold, and the false
alarm and false negative rates were 30% and 11%, respectively. In
addition, the error evaluation results were substantially lower than for
the other two scenarios (Fig. 17).

The results indicate that the rain gauge should be selected carefully
when identifying the rainfall conditions in the source region responsible
for initiation of debris flows. The rain gauge at the watershed outlet,
which is commonly used in mountainous regions, generally un-
derestimates the rainfall condition. In addition, representativeness
should also be considered when using an alternative gauge within the
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watershed but with a distance of > 3 km from the debris flow source
region. In contrast, the better performance achieved using Eq. 5 in-
dicates that the spatial variation of rainfall cannot be neglected, and that
the relationship between rainfall and elevation could be used for esti-
mating rainfall within a watershed.

7. Discussion

As rainfall is a crucial factor for hydrological hazards, many
advanced approaches (e.g., radar and satellite remote sensing) have
been developed in recent years for rainfall estimation. Radar quantita-
tive precipitation estimation is an active and vibrant field with
numerous accomplishments resulting in practical applications (e.g.,
Germann et al., 2006; Yoshikawa et al., 2012; Chen et al., 2017; Shi-
mamura et al., 2016; Chandrasekar et al., 2018). It is expected to
improve our knowledge of rainfall processes by providing greater dy-
namic range, more detailed information on microphysics, and better
accuracies in rainfall estimation. This information will not only give us
insight into microphysical processes but also provide detailed properties
of the rainfall (Chandrasekar et al., 2008). With the local bias correction
of the ground gauge data, it has been used for hydrological hazards
forecasting recently (Peleg et al., 2013; Mei et al., 2014; Espinosa et al.,
2015; Zhang et al., 2016; Willie et al., 2017; Shi et al., 2018). Yet, even
with the success, more complete coverage is needed, both spatially and
temporally, especially for a small mountainous catchment and an event
rainfall scale. In regions such as the study area, gauge measurements
remain the most effective means for data collection. Some recent studies
have proposed that ground-based measurements of rainfall are to some
extent not sufficiently reliable for interpolation purposes; however, this
largely reflects the insufficient quantity of gauges (e.g., Frei and Schar,
1998; Goovaerts, 2000; Lloyd, 2005; Ly et al., 2011; Tobin et al., 2011;
Marra et al., 2014; 2016; Thakur et al., 2020).

In the previous research, it has been found that rainfall increases
with elevation, which commonly called the orographic enhancement,
typically approximate a linear form in most cases, is evident (Hibbert,
1977; Houghton, 1979; Obsorn, 1984; Daly et al., 1994; Sanchez-Mor-
eno et al., 2013). The focuses are the average amount or the accumu-
lated amount of long-term period (e.g. annual and month rainfall). In
this study, although a general exponential increasing tendency of rain-
fall with elevation was proposed, the linear tendency of the average
rainfall of 52 events is also evident (Fig. 2), which indicated consistent
with the findings of other related research (e.g., Vuglinski, 1972; Hib-
bert, 1977; Smith, 1979; Kumari et al., 2017; Hevesi et al., 1992a;
1992b;; Goovaerts, 2000).

The analysis used measurements from 10 rain gauges in a small
watershed, which represented a dense gauge network and a reliable data
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source. Here, we assume that the measured natural rainfall is the real
rainfall without data correction. Although it is well known that rainfall
amounts measured by means of ground gauges contain some negative
biases, the evaluation of such uncertainty is not the purpose of this work.
The findings of this study could provide a reference for rainfall

primary factor affecting rainfall variation in this region. Results showed
that the mean event rainfall and elevation exhibited an exponential
relationship. Moreover, rainfall amount varied with elevation in each
event. Thus, an empirical rainfall-elevation relation was proposed for
rainfall estimation. Although the accuracy of this method was poorer
than that of commonly used interpolation methods, it is advantageous in
that it requires only the rainfall data recorded at the watershed outlet.

In addition, the rainfall interpolation uncertainties and effects of
gauge distance were evaluated. All interpolation results showed a
similar error tendency and demonstrated that estimating rainfall dis-
tributions at high elevations is more difficult. Error analysis indicated
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that rain gauges should be placed carefully when the horizontal distance
between gauges is > 3.0 km.

Selecting an inappropriate rain gauge for obtaining data caused
significant uncertainty in simulations of water flood discharge and in
identification of rainfall thresholds for debris flows. Using a gauge
located at the mouth of the watershed, or in the headwater region,
produced poorer performance in terms of flow simulation and empirical
threshold identification for debris flows, when compared with the esti-
mation method proposed in this work. This suggests that the represen-
tativeness of the rain gauge should be considered carefully, and that
clear understanding of the spatial variation of rainfall could help in
estimation of the rainfall conditions required for initiation of hydro-
logical hazards.
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