
Journal of Hydrology 595 (2021) 126049

Available online 5 February 2021
0022-1694/© 2021 Elsevier B.V. All rights reserved.

Research papers 

Spatial uncertainty of rainfall and its impact on hydrological hazard 
forecasting in a small semiarid mountainous watershed 

Guo Xiaojun a,b,*, Cui Peng a,b, Chen Xingchang c, Li Yong a, Zhang Ju c, Sun Yuqing c 

a Key Laboratory of Mountain Hazards and Surface Process/Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China 
b CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing 100101, China 
c School of Environment and Resource, Southwest University of Science and Technology, Mianyang 621020, China   

A R T I C L E  I N F O   

This manuscript was handled by Marco Borga, 
Editor-in-Chief  

Keywords: 
Rainfall 
Spatial variability 
Rainfall estimation 
Rain gauge network 
Debris flow 

A B S T R A C T   

Rainfall in mountainous watershed presents high spatial variability due to elevation effects, and this introduces 
uncertainty in forecasting hydrological hazards such as water floods and debris flows. This study investigated the 
spatial variation of rainfall in a small watershed with a network of 10 rain gauges. A rainfall-elevation rela
tionship was established based on data from 52 rainstorm events, which provides a method for rainfall estimation 
within the watershed. Result indicated that lower errors of interpolation occur when the rainfall amount is high, 
and that it is more difficult to estimate rainfall in high-elevation regions. Rain gauges become less representative 
when the distance between gauges is >3.0 km. The spatial variation of rainfall suggests that the gauge at the 
lowest elevation, or a single gauge within the source region, shows non-negligible errors with regard to calcu
lating water flood discharge and identifying rainfall thresholds for debris flows. This study contributes to the 
understanding of event rainfall distribution and its impact on hydrological hazard forecasting in a small 
mountainous watershed.   

1. Introduction 

Rainfall is the most common inducing factor of hydrological hazards 
(e.g., water floods and debris flows) in mountainous watersheds with 
areas of ≤50 km2 and large elevation differences (Wieczorek, 1996; 
Jakob et al., 2012; Hungr et al., 2014; Cui et al., 2018). Forecasting of 
such events is achievable through physical-based simulation (e.g., hy
drological modeling) and/or empirical methods (e.g., statistical rainfall 
thresholds), both relying on rainfall as input. However, the rainfall data 
is highly uncertain due to measurement errors, systematic errors of in
terpolations, and intrinsic errors of rainfall randomness; these errors 
propagate through the model and directly impact the accuracy of fore
casting. Therefore, a good knowledge of the uncertainty of rainfall data 
is essential for a correct forecasting of hydrological hazards. 

Obtaining accurate rainfall data in mountainous region represents a 
major challenge (Krajewski et al., 2000, 2003). Radar and satellite 
remote sensing can provide nearly complete qualitative distributions of 
rainfall at high temporal and spatial resolutions, and both have become 
viable techniques for supplementing rainfall information (e.g., Fabry 
et al., 1994; Bradley et al., 2002; Kirschbaum et al., 2012; Rossi et al., 

2012; Marra et al., 2014; 2016). However, the coverage in many 
mountainous regions is poor. Thus, in most cases, ground-based rain 
gauge networks remain the only viable option for measurement of local 
rainfall (Habib et al., 2001). Unfortunately, the density of a rain gauge 
network is often too low to provide sufficient data. Therefore, estima
tions are often produced based on data recorded at neighboring gauges 
(e.g., Aleotti, 2004; Godt et al., 2006; Brunetti et al., 2010; Berti et al., 
2012). In such cases, huge discrepancies can arise, the implications of 
which were clearly illustrated by the catastrophic debris flows in 
Zhouqu (China) on August 8, 2010, which caused 1765 fatalities. In the 
event, a gauge 16 km from the headwaters recorded 96 mm of rainfall, 
whereas the gauge at the outlet recorded only 3 mm (Hu et al., 2010; Cui 
et al., 2013). Such results exemplify the scale of the variation and un
certainty associated with rainfall in mountainous watersheds. 

The spatial distribution of rainfall is complicated, and influenced by 
many orographic parameters (e.g., elevation, slope, aspect, shadowing, 
and curvature) and climatic factors (e.g., wind) (e.g., Goovaerts, 2000; 
Lloyd, 2005; Tobin et al., 2011), but it is hard to identify the major 
factors responsible for the high spatial variability of rainfall in small 
watershed (Dore et al., 1982). For a better understanding and 
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characterization, the local key influencing parameters should be 
considered. For instance, Spreen (1947) found that elevation alone ex
plains 30% of the seasonal variance of rainfall while the combination of 
altitude, slope, exposure and orientation explained 88%. Basist et al. 
(1994) found slope gradient, orientation, elevation and exposure as the 
best mean annual precipitation predictors for 10 mountains. Strong 
winds may also redistribute the precipitation facilitating largest 
amounts in the valleys (Ye et al., 2004; Yang et al., 2005). Among the 
parameters, elevation can be considered as the most important because 
its influence remains constant, while that form others varies with events 
(Hevesi et al., 1992a; 1992b;; Goovaerts, 2000; Tobin et al., 2011). In 
most cases, on a given slope, rainfall typically increases with elevation, 
which is commonly called the orographic effect (e.g. Hutchinson, 1968; 
Vuglinski 1972; Hibbert, 1977; Smith 1979; Kumari et al., 2017); and 
generally, local rainfall increases with elevation in linear form, which 
has proved an acceptable approximation in many situations (e.g. Hib
bert, 1977; Houghton, 1979; Obsorn, 1984; Buytaert et al., 2006). 
However, the characteristics of the relationship can vary appreciably 
from hillslope to hillslope. This make it difficult to obtain a usable 
relationship, unless rainfall stations are grouped into regions that con
trol for such factors (Basist et al., 1994; Kumari et al., 2017). Although 
systematic uncertainties exist for measuring the rainfall amounts by 
gauges with regard to many factors, they can be reduced significantly by 
long-term and dense rainfall monitoring networks (Ye et al., 2004; 
Zhang et al., 2004; Xu et al., 2013; Ma et al., 2015; Kumari et al., 2017). 

Objectives of rain gauge network design include effective rainfall 
measurement and determination of the effects of rainfall uncertainty to 
other hydrological variables (Bras et al., 1988). Gauge distribution 
significantly influences rainfall estimation. It has been suggested that 
only densely-distributed gauges are adequate for forecasting of rainfall- 
induced floods and debris flows (Haberlandt, 2007; Wagner et al., 
2012). Interpolation based on geostatistical theory, which relies on a 
robust anisotropic variogram to define the spatial rainfall structure, is 
useful for rainfall estimation (e.g., Goovaerts, 1997; 2000; 2013; Price 
et al., 2000; Lloyd, 2005; Hancock and Hutchinson, 2006; Tobin et al., 
2011; Wagner et al., 2012; Ly et al., 2011; Krivoruchko, 2012; Krivor
uchko and Gribov, 2019). Unfortunately, the validation approach de
pends on the number and distribution of gauges, which are generally 
inadequate in data-sparse watersheds (Hattermann et al., 2005). 
Therefore, both the design of an effective monitoring network and 
choice of an interpolation method require insight into the variability and 
uncertainty of rainfall (Goovaerts, 2000; Buytaert et al., 2006). Several 
studies have proposed techniques to address the rainfall estimation 
uncertainty and its effects on hydrological hazard prediction (Jakob 
et al., 2012; Nikolopoulos et al., 2014, 2015). Most related studies have 
been conducted on long-term (i.e., monthly/daily) rainfall over large 
regions rather than on short-term rainfall events in small watersheds. 
The distinction is important because rainfall is more heterogeneous and 
pronounced over short timescales, and the degree of uncertainty is 
influenced primarily by the density of gauges (Nikolopoulos et al., 
2014). 

In general, despite the complxity of mechanisms for spatial variation 
of rainfall, orographic variables are undoubtedly the tangible agencies; 
among which the elevation is the most conspicuous (Lloyd, 2005; Tobin 
et al., 2011). Therefore, in this study we analyzed the relationship be
tween rainfall and elevation in a small mountainous watershed with 
large elevation difference, and proposed a rainfall estimation method. In 
addition, we assessed the estimation errors associated with elevation, 
rainfall amount, and gauge density using rainfall interpolation methods. 
Finally, the uncertainty of using different rainfall input data for fore
casting floods and debris flows was evaluated to determine the effect of 
the representativeness of rain gauges. 

2. Study area 

Water floods and debris flows occur frequently and are widely 

distributed throughout the basin of the Xiaojiang River, a tributary of 
the Jinsha River in Southwest China (Fig. 1). This semiarid mountainous 
area has high tectonic activity, abundant fragmented rocks, and large 
elevation differences. It is known for its poor ecological conditions and 
environmental disasters such as landslides, debris flows, soil erosion, 
and land debrisization. In addition to the geological and topographic 
conditions that are favorable for debris flow development, the moun
tains stimulate the occurrence of hydrological hazards by providing 
abundant rainfall and runoff for soil movement in headwater regions. 
Forecasting of the hazards is difficult because of the spatial variation of 
rainfall. 

The Jiangjia Gully is located within the Xiaojiang River. It has an 
area of 48.6 km2, and it extends from its drainage divide at an elevation 
of 3269 m to its outlet at 1042 m. It has been frequently impacted by 
tectonic activities (e.g., earthquakes) and has deeply cut sloping terrain 
over a large elevation range. This valley is known for frequent debris 
flow occurrences and long-term rainfall observations (Cui et al., 2005; 
Guo et al., 2013, 2016). Many studies have examined the mechanisms 
and triggering conditions of debris flows (e.g., Li et al., 2003, 2004, 
2008; Cui et al., 2005, 2007). We selected it for this case study because 
of its dense rain gauge distribution (Fig. 1). 

The valley can be divided into three climatic regimes. (1) A sub
tropical, dry, and hot valley climate extending from the outlet up to 
1600 m, where the mean annual precipitation (MAP) is 600–700 mm, 
mean annual temperature (MAT) is 20 ◦C, and mean annual evaporation 
(MAE) is 3700 mm. (2) A subtropical, semiarid climate between 1600 
and 2200 m, where MAP is 700–850 mm, MAT is 13 ◦C, and MAE is 
1700 mm. (3) A humid climate above 2200 m, where MAP is 850–1200 
mm, MAT is 7 ◦C, and MAE is 1350 mm. The variations in precipitation, 
temperature, and evaporation affect both vegetation distribution and 
rock weathering, and thus contribute in varying degrees to the occur
rence of debris flows (Cui et al., 2015; Guo et al., 2020). To date, debris 
flows are mainly formed in the Menqian Gully, which is the northern 
branch (Fig. 1). 

Ten rain gauges (R1–R10) have been installed in the watershed 
(Fig. 1). Based on monitoring data (2006–2017), the rainy season 
(May–September) accounts for approximately 85% of MAP. For 
example, at gauges R1 and R9, rainfall during the rainy season accounts 
for 83.0% and 89.7% of the total annual rainfall, respectively. The 
maximum daily rainfall amounts recorded at R1 and R9 are 53.5 and 
63.1 mm, respectively, accounting for 9.4% and 10.0% of the total 
annual rainfall. Torrential rainstorms in summer are the main factor 
contributing to the frequent occurrence of debris flows. 

3. Data source and methods 

3.1. Data source 

The length of the data records of the 10 rain gauges extends for more 
than a decade. The lowest-placed gauge (R1) is at the elevation of 1351 
m in the downstream section (Fig. 1), whereas the others are all in the 
headwater regions at various elevations, as listed in Table 1. Each rain 
gauge measures real time rainfall using a 0.1-mm tipping bucket and the 
data are transmitted via the General Packet Radio Service. Rainfall 
events are separated with 6 h dry hiatuses (Restrepo-Posada and 
Eagleson, 1982). The rainfall amount of the event rainfall was therefore 
cumulated quantitatively from the beginning to the end of the rainfall. 
To identify the spatial characteristics of event rainfall within the 
watershed, we assessed the rainfall data recorded during 2006–2017 
and selected 52 events in which the rainfall amount exceeded 10.0 mm 
at all gauges. 

3.2. Methods 

(1) Statistical methods 
Two pairs of rain gauges were employed (R9 (2831 m) and R10 
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(2892 m), and R4 (2316 m) and R5 (2334 m)) to analyze the correlation 
and differences of rainfall data recorded at two gauges at similar 
elevation. 

The Pearson correlation coefficient (Kendall and Stuart, 1963), a 
common statistical method, was used to reflect the level of similarity 

between the 52 rainfall events. The Kolmogorov–Smirnov (K-S) 
normality test (Gauthier and Hawley, 2007), a special goodness-of-fit 
hypothesis test, was used to determine whether two datasets differed 
significantly. The K-S test has the advantage of making no assumption 
about the distribution of the data (i.e., it is nonparametric and 

Fig. 1. Location, elevation, and rain gauge distribution of the Jiangjia Gully in Southwest China.  
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distribution free). 
(2) Rainfall interpolation 
To investigate the uncertainty of gauge selection, we used three 

interpolation methods that included deterministic and probabilistic 
methods: inverse distance weighting (IDW), Empirical Bayesian Kriging 
(EBK), and Spline. Overall, the interpolated value of rainfall at a location 
is given by the weighted summation of known rainfall estimates (i.e., 
rain gauge data). Such geostatistical theories and methods are used 
widely used for rainfall interpolation (Lebel et al., 1987; Cressie, 1991; 
Goovaerts, 1997; 2000;; Webster and Oliver, 2007; Bargaoui and 
Chebbi, 2009; Krivoruchko, 2012; Krivoruchko and Gribov, 2019). 

(3) Rain gauge network configurations 
We numerically generated rain gauge networks to investigate the 

effect of gauge densities and locations on interpolation results. Rain 
gauge networks were generated using tools in ArcGIS (ESRI, 2011). The 
geometric center of the watershed was set as the center of a square grid, 
having side lengths of l. Rain gauges were set at each grid intersection, 
with no consideration of topographic constraints on installation. 
Essentially, the real rainfall values from real gauges corresponding to the 
locations of the simulated gauge locations were used to mimic sampling 
of the rainfall field from a gauge network of the same density. The dis
tance between two neighboring gauges were defined as l. In this case, the 
number of rain gauges (i.e., intersections) corresponded to sampling 
densities of l set to 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 km, respectively. 

The gauge density as a key factor in analyzing rainfall estimation 
uncertainty was characterized by the distance between simulated 
gauges. Typically, the selection of mimic gauge locations relied on field 
experience, especially in low density cases. However, we found that 
rainfall interpolation results were similar for several configurations. 

(4) Water flood and debris flow forecasting 
A combination of the SCS-CN loss method for runoff yield and the 

kinematic wave method for slope and channel routing calculation was 
applied to evaluate the uncertainty of flood and debris flow forecasting 
(SCS, 1985; Mishra and Singh, 2003; Lumbroso and Gaume, 2012; Capra 
et al., 2018; Guo et al., 2020). The key parameters in the methods are the 
CN value and the slope and channel roughness coefficients: n1 and n2, 
respectively. The parameters can be identified via lookup tables (SCS, 
1985). In this work, the CN value for the watershed was set to 75, and 
coefficients n1 and n2 were set to 0.3 and 0.08, respectively; these values 
were held constant for each rainfall event and rainfall input scenario. 

The intensity–duration (I-D) relationship for rainfall threshold is 
used for debris flow forecasting. Here, the duration (D) is defined as the 
period from the beginning of the rainfall event to onset of debris flow, 
and rainfall intensity (I) is considered as the mean intensity during 
period D (e.g., Caine, 1980; Guzzetti et al., 2007; 2008; Badoux et al., 
2012; Berti et al., 2012). 

4. Elevation influence on rainfall within the study area 

Elevation, as mentioned above, is generally considered the most 
important topographic variable (Hevesi et al., 1992a; 1992b;; Goo
vaerts, 2000; Tobin et al., 2011). In the study area, although most of the 
gauges are located in headwater regions, the local landform is open flat 
ground. Therefore, as the effects of the other factors are difficult to 
quantify, the effect of elevation was primarily investigated. 

4.1. Rainfall variation with elevation 

The mean rainfall amount for each event was determined by aver
aging the values from all gauges. The values of each specific gauge were 

also averaged for all events. These data showed that R1 had the lowest 
mean rainfall (18.4 mm), while R7 had the highest mean rainfall (31.9 
mm). 

Examination of these results also showed that rainfall varied mark
edly with elevation. In almost all cases, and for both mean and 
maximum values, rainfall increased with elevation (Fig. 2). The eleva
tion of each gauge was normalized by dividing its elevation by that of R1 
(1351 m) to avoid the exponent parameter becoming too small. Then the 
relationship between mean event rainfall values and normalized eleva
tion appears as: 

Rm = 8.9 e0.44h, R2 = 0.7902 (1)  

where Rm is the mean event rainfall amount (mm) and h is the 
normalized elevation. 

It was also found that the value of each rainfall was related to 
elevation, and that 39 of the 52 events (75%) present exponential re
lationships with R2 > 0.5 (Fig. 3; based on 10 events). This suggests that 
Eq. 2 could be used to approximate the spatial variation of rainfall in 
most cases: 

R = aebh (2)  

where R is the rainfall amount (mm) and h is the normalized elevation; 
and coefficient a (range: 4.50–35.83) and exponent b (range: 
0.255–0.857) define the rainfall variance. 

4.2. Differences between gauges at similar elevations 

We assessed the correlation between the rainfall measured at similar 
elevations using data from two pairs of gauges: R4 (2316 m) and R5 
(2334 m), and R9 (2831 m) and R10 (2892 m). The horizontal distance 
between the gauge pairs was 4.1 (R4–R5) and 1.8 km (R9–R10). The 
expectation (E) and standard deviation (σ) of the rainfalls are listed in 
Table 2. The Pearson correlation coefficient (P) was used to evaluate the 
similarity of the rainfall for each pair. At a significance level of 0.01, P 
was 0.857 and 0.789, respectively for R4–R5 and R9–R10, indicating 
high similarity. Event rainfall for each pair is presented on 1:1 scatter
plots in Fig. 4a and 4b. The average deviation was 18.8% and 7.5%, 
respectively, indicating a certain degree of variance. 

The results of the K-S normality test, which was used to analyze the 
difference between the two data series, indicated no significant 

Table 1 
Elevation of rainfall gauges within the Jiangjia Gully watershed.  

Date R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Elevation (m) 1351 1636 2243 2316 2334 2592 2748 2818 2831 2892  

Fig. 2. Relationship between mean rainfall and elevation in the study area.  
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difference. The high correlation and non-significant difference between 
the mean rainfall amounts for the two gauge sets, where each compo
nent shared the same elevation with its pair, indicate that evident effect 
of the elevation to the rainfall variation. 

4.3. Rainfall estimation based on elevation 

The rainfall value at a specific location can be calculated by weighted 
summation of rainfall records. However, such interpolation relies on a 
dense network of rain gauges, which is typically unavailable in moun
tainous regions. If strong correlation exists between rainfall and topo
graphic variables, then the variables could be used for rainfall 

estimation (Lloyd, 2005; Tobin et al., 2011). 
Recorded data indicat that the coefficient a is linearly related to the 

minimum rainfall (i.e., R1, as represented by record at R1), and exponent 
b reflects the increase in rainfall with elevation (Fig. 5):  

a = mR1 − n                                                                                  (3)  

b = clna + d                                                                                  (4) 

where m, n, c, and d are constant coefficients . In this study, the values of 
the coefficients were set as c = 1.53, d = 0.32, m = 0.69, and n = 1.04. 

Combining Eqs. 2, 3, and 4, the relationship between rainfall amount 
and gauge elevation can be expressed as 

R = ech(mR1 − n)ch+1R− dh
1 = (0.69R1 − − 1.04)R− 0.32h

1 e1.53h (5)  

where R is the rainfall at a specified location in the watershed (mm), R1 
is the rainfall collected at rain gauge R1 (mm), and h is the elevation 
relative to R1. Using Eq. 5, the rainfall value at each point within the 
watershed was calculated based on the R1 value for each rainfall event. 
The errors associated with this method are shown in Fig. 6. 

In Fig. 6, the error of the EBK method is used as the x-axis, and it can 
be seen that the error of both the IDW and the Spline methods is close to 
that of the EBK method. The average errors of the IDW, EBK, and Spline 
methods are 2.0%, 1.1%, and 1.5% at R4, respectively, and 8.5%, 7.5%, 
and 8.6% at R6, respectively. In most cases (22 of 26 events at R4 and 37 
of 45 events at R6), the value calculated using Eq. 5 was an over
estimation compared with the recorded rainfall amount. The errors of 
7.9% and 17.8% at R4 and R6, respectively, are much larger than those 
of traditional interpolation methods. This is expected and acceptable 
because this estimation depends on a single gauge (i.e., the lowest 
gauge, which is generally located at the watershed outlet) rather than on 
a dense rain gauge network. 

Approximately, the higher the rainfall value at R1, the lower the 
absolute error values at both R4 and R6 (Fig. 7). If an error of 40% were 
acceptable for rainfall estimations at both R4 and R6, then the rainfall 
recorded at R1 should be > 15.0 and > 17.5 mm, respectively. Given 
that R6 has a longer record than R4, a 17.5-mm rainfall threshold is 
adopted as the condition on R1 for Eq. 5. It ensures that the higher the 
rainfall amount, the stronger the relationship between rainfall and 
elevation, and thus the better the estimations. 

5. Uncertainties of rainfall interpolation and effects of gauge 
distance 

Density and location of ground-based rain gauges are crucial factors 

Fig. 3. Data showing the exponential relationship between rainfall amount and 
gauge elevation. 

Table 2 
Expectation and standard deviation values for the 52 rainfall events at selected 
gauges.  

Rain gauge E σ n P 

R9  40.9  14.1 49 0.857 
R10  41.9  15.1 50 
R4  37.1  14.9 27 0.789 
R5  40.6  18.0 46 

n is the number of rain events recorded. 

Fig. 4. Comparison of event rainfall amounts recorded at similar elevations: (a) R4–R5 and (b) R9–R10.  
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that require careful consideration, as they significantly affect the accu
racy of rainfall-induced hazard parameter calculations (Duncan et al., 
1993). The distance between gauges, which reflects the representative 
range of each gauge, requires careful evaluation (Bradley et al., 2002; 
Villarini et al., 2008, 2014). 

5.1. Rain gauge network configurations 

We numerically generated rain gauge networks to investigate the 
effect of gauge density and location on the interpolation results. The 
distance (l) between two gauges was set separately as 0.5, 1.0, 1.5, 2.0, 
2.5, 3.0, 3.5, and 4.0 km, which represent different gauge densities and 
numbers, as shown in Fig. 8. 

Rainfall values were assigned to each gauge based on the rainfall 
distribution within the watershed. Therefore, for each rainfall event, we 
used Eq. 5 to calculate the rainfall amount at each simulated gauge and 
at the watershed center point (CC). Subsequently, rainfall was interpo
lated over the entire watershed using the IDW, EBK, and Spline methods. 
Interpolation results for each real gauge were compared with back
ground values calculated using Eq. 5, which provided reference values 
for the analysis. 

5.2. Uncertainty of rainfall interpolation 

Progressively denser rain gauge networks are belived to produce 

increasingly accurate rainfall interpolation results. In this case, the 
interpolation errors were presented with a gauge separation distance of 
0.5 km, i.e., the densest configuration. The results for four gauges (R1, 
CC, R4, and R10 at elevation of 1351, 1838, 2316, and 2892 m, 
respectively) are shown in Fig. 9, based on which the following obser
vations can be made.  

(1) The absolute error of any of the three methods was no higher than 
6%, suggesting high accuracy, as if the data used for the inter
polation were abundant.  

(2) The error property (positive or negative) for each interpolation 
method was the same for each gauge. In general, the mean error 
was negative, indicating that rainfall was underestimated by all 
interpolation methods and in all rain gauge density scenarios, 
except at R1. This also indicates that on average rainfall was 
overestimated by Eq. 5.  

(3) Lower errors of interpolation occurred when rainfall amounts 
were high. This pattern was consistent for all interpolation 

Fig. 5. Relationship between rainfall amount at R1 and (a) coefficient a and (b) 
exponent b. 

Fig. 6. Errors of inverse distance weighting (IDW), Spline, and Eq. 5 vs. the 
error of Empirical Bayesian Kriging (EBK). 
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methods, although the error rate varied among the different 
methods. 

The relationship between estimation error and gauge elevation was 
investigated under each gauge configuration. As the IDW, EBK, and 
Spline methods showed similar tendency with elevation, only the results 
obtained using IDW are discussed here. All errors were arithmetically 
averaged by the absolute values of the real errors, and they are shown by 
the black line in Fig. 10. 

Error values were small at low elevations and the mean error 
increased with elevation. Over the elevation range 1300–1900 m (R1, 
R2, and CC), errors were 1.4%–10.2% with average of 4.9%–6.3%. Over 
the elevation range 2000–2400 m (R3–R5), errors were 2.7%–10.8% 
with average of 6.1%–9.2%. Errors increased to 3.7%–19.4% (average: 
10.4%–15.6%) over elevation range 2600–2900 m at the headwater 
region of the watershed (R6–R10). These results imply that it is more 
difficult to estimate rainfall in high-elevation regions. 

5.3. Effective distance for rain gauges 

Rain gauge density might cause significant bias in estimation of 
rainfall thresholds for debris flows (Nikolopoulos et al., 2014). Although 
the interpolation errors were different for all three studied methods, 

their tendencies were similar. As such, the results obtained using the 
IDW method are used to illustrate the effect of gauge density on inter
polation error. 

Inclusion of more rain gauges within a network might be expected to 
produce more accurate interpolation results (Nikolopoulos et al., 2014); 
however, this was not the case in this study. Instead, the interpolation 
errors reflected the variation of gauge configuration. It can be seen that 
the error lines associated with each rainfall event are parallel (Fig. 11, 
taking R1 and R2 as examples). The maximum and minimum errors for 
each rainfall event for all 10 rain gauges are shown in Fig. 12. In most 
cases, the errors changed smoothly over gauge distances of 0.5–2.5 km 
but changed abruptly for distances of 2.5–3.0 km. This is apparent in the 
error data for the average watershed rainfall shown in Fig. 13. Although 
the errors decreased as the grid length increased over the 0.5–2.5-km 
range, the error variations are very small (− 1% to − 5%). In contrast, the 
errors increased abruptly at the 3.0-km grid length, leading to less 
reliable results. These findings suggest that rain gauge placement should 
be considered carefully when the horizontal distance between gauges in 
a network is >3.0 km. 

6. Effect of uncertainties of gauge selection on hydrological 
hazard forecasting 

The quality of rainfall data significantly affects the accuracy of hy
drological modeling and hazard forecasting, but dense gauge network is 
impractical in most mountainous regions. At best, in most circum
stances, the arrangement consists of one gauge at the outlet, or inside the 
watershed if there is an established local village. This deficiency pre
sents a serious challenge because data from one gauge might not be 
sufficiently representative of the watershed, especially in regions with 
high spatial variation in the distribution of rainfall. Thus, the following 
section discusses the uncertainties caused by the selection of different 
gauges, from the perspectives of water flood discharge simulation and 
the determination of rainfall thresholds for debris flow forecasting. 

6.1. Influence of gauge selection on hydrological simulation 

In the study region, water floods are doubly problematic, because in 
addition to causing their own catastrophic damage, they are also 
responsible for triggering debris flows. We selected eight rainfall events 
to investigate the influence of rain gauge selection on peak discharge 
and total water quantity measurements by setting up different inputs for 
hydrological simulations. These eight events represented a range of 
varying rainfall amounts and durations. 

Four rainfall input scenarios were designed that consisted of inter
polation based on the following: I) all 10 rain gauges, II) one of the rain 
gauges in the high-elevation headwater region (R9), III) the lowest 
station in the Jiangjia Gully main channel (R1), and IV) rainfall calcu
lated using Eq. 5. Among them, scenario I is regarded as the most ac
curate input; thus, results from the other scenarios were compared with 
this scenario. A combination of the SCS-CN loss method for runoff yield 
and the kinematic wave method for slope and channel routing calcula
tion was applied. The CN value for the watershed was set to 75, and this 
was held constant for each rainfall event and rainfall input scenario. The 
simulation results are shown in Figs. 14 and 15. 

Results for scenario III (using R1 at the lowest elevation to represent 
rainfall conditions throughout the entire watershed) show that the water 
flood was seriously underestimated in all cases, with non-referential 
results. In contrast, the results for scenario II (using R9 in the head
water region) show that the water flood was overestimated in most cases 
(7 in 8 cases). This not only demonstrates that rainfall increases with 
elevation but also highlights the uncertainties caused by inappropriate 
rain gauge selection. However, when using the estimation of Eq. 5 as the 
rainfall input (scenario IV), the errors were much smaller. The peak 
discharge simulation errors were in the range of [− 14.0%, 23.5%], 
while the errors of the total water flood amount are in the range of 

Fig. 7. Data showing the relationship between rainfall estimation errors at two 
gauges: (a) R4 and (b) R6, based on Eq. 5 and rainfall amount at R1. 
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[− 11.8%, 16.4%]. These results exhibit acceptable accuracy, especially 
considering the difficulty of obtaining rainfall data in mountainous 
areas. 

6.2. Effect of uncertainties of gauge selection on rainfall thresholds for 
debris flows 

The I-D relationship is a common approach for identification of 
rainfall thresholds in debris flow forecasting (e.g., Caine, 1980; Guzzetti 
et al., 2007; 2008). The determination of rainfall thresholds is often 

performed based on long-term historical rainfall data. To estimate the 
magnitude of the errors in threshold identification caused by the rainfall 
estimation, we used the 52 rainfall events, 19 of which triggered debris 
flows. 

The rainfall was selected from the following: (1) the most repre
sentative gauge, which was determined based on detailed analysis of the 
rainfall and the monitoring of the debris flow processes. As debris flow 
initiation in the source regions was not monitored, when a debris flow 
appeared at the monitoring section, the rainfall process was investigated 
based on gauges located in the source regions. In particular, 

Fig. 8. Maps of the study area showing simulated rain gauge distributions for various grid lengths.  
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consideration was given to both the time lag between debris flow 
appearance and peak rainfall, and the differences in the rainfall process 
between the gauges (Guo et al., 2020); (2) R1, located at the mouth of 
the watershed; (3) R7, at elevation in the source areas, about 5 km from 
the catchment center (Fig. 1); and (4) the rainfall estimated using Eq. 5. 
This examination considers both the influence of elevation and gauge 
distance. In essence, the rainfall thresholds were compared with the 
actual I-D threshold to evaluate the effectiveness of using rainfall data 

from different sources. 
The threshold was identified as I = 11.23 D− 0.710 by selecting the 

most representative gauge. The false alarm and false negative rates, 
defined as percentages of the total numbers, were 34% and 0%, 
respectively, and the results obtained for the other three scenarios were 
compared with these results. It has been suggested that debris flows in 
this watershed are most likely triggered during rainfall events with 
duration of < 16.8 h (Fig. 16). Therefore, considering the traditional 
duration used in forecasting by the China Meteorological Department, 
rainfall durations of 1, 12, and 24 h were assumed and the 1-h, 12-h, and 
24-h rainfall amounts required to trigger debris flows were estimated. 
The results are shown in Fig. 17. 

When using R1 as the rainfall information source, the threshold was 
identified as I = 8.28 D− 0.751, with false alarm and false negative rates of 
47% and 0%, respectively, and the required 1-, 12-, and 24-h rainfall 
amounts were evidently underestimated. When using the rainfall from 
R7, the threshold was I = 15.81 D− 0.748, the false alarm and false 
negative rates were 24% and 32%, respectively, and the error of the 1-h 
rainfall amount was overestimated by as much as 40.8%. However, for 
the rainfall calculated using Eq. 5, the rainfall threshold was identified 
as I = 12.98 D− 0.707, which is closer to the real threshold, and the false 
alarm and false negative rates were 30% and 11%, respectively. In 
addition, the error evaluation results were substantially lower than for 
the other two scenarios (Fig. 17). 

The results indicate that the rain gauge should be selected carefully 
when identifying the rainfall conditions in the source region responsible 
for initiation of debris flows. The rain gauge at the watershed outlet, 
which is commonly used in mountainous regions, generally un
derestimates the rainfall condition. In addition, representativeness 
should also be considered when using an alternative gauge within the 

Fig. 9. Relative rainfall estimation errors for R1, CC, R4, and R10 based on the three interpolation methods.  

Fig. 10. Inverse distance weighting interpolation errors in rainfall estimation 
with increasing elevation. 
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watershed but with a distance of > 3 km from the debris flow source 
region. In contrast, the better performance achieved using Eq. 5 in
dicates that the spatial variation of rainfall cannot be neglected, and that 
the relationship between rainfall and elevation could be used for esti
mating rainfall within a watershed. 

7. Discussion 

As rainfall is a crucial factor for hydrological hazards, many 
advanced approaches (e.g., radar and satellite remote sensing) have 
been developed in recent years for rainfall estimation. Radar quantita
tive precipitation estimation is an active and vibrant field with 
numerous accomplishments resulting in practical applications (e.g., 
Germann et al., 2006; Yoshikawa et al., 2012; Chen et al., 2017; Shi
mamura et al., 2016; Chandrasekar et al., 2018). It is expected to 
improve our knowledge of rainfall processes by providing greater dy
namic range, more detailed information on microphysics, and better 
accuracies in rainfall estimation. This information will not only give us 
insight into microphysical processes but also provide detailed properties 
of the rainfall (Chandrasekar et al., 2008). With the local bias correction 
of the ground gauge data, it has been used for hydrological hazards 
forecasting recently (Peleg et al., 2013; Mei et al., 2014; Espinosa et al., 
2015; Zhang et al., 2016; Willie et al., 2017; Shi et al., 2018). Yet, even 
with the success, more complete coverage is needed, both spatially and 
temporally, especially for a small mountainous catchment and an event 
rainfall scale. In regions such as the study area, gauge measurements 
remain the most effective means for data collection. Some recent studies 
have proposed that ground-based measurements of rainfall are to some 
extent not sufficiently reliable for interpolation purposes; however, this 
largely reflects the insufficient quantity of gauges (e.g., Frei and Schar, 
1998; Goovaerts, 2000; Lloyd, 2005; Ly et al., 2011; Tobin et al., 2011; 
Marra et al., 2014; 2016; Thakur et al., 2020). 

In the previous research, it has been found that rainfall increases 
with elevation, which commonly called the orographic enhancement, 
typically approximate a linear form in most cases, is evident (Hibbert, 
1977; Houghton, 1979; Obsorn, 1984; Daly et al., 1994; Sanchez-Mor
eno et al., 2013). The focuses are the average amount or the accumu
lated amount of long-term period (e.g. annual and month rainfall). In 
this study, although a general exponential increasing tendency of rain
fall with elevation was proposed, the linear tendency of the average 
rainfall of 52 events is also evident (Fig. 2), which indicated consistent 
with the findings of other related research (e.g., Vuglinski, 1972; Hib
bert, 1977; Smith, 1979; Kumari et al., 2017; Hevesi et al., 1992a; 
1992b;; Goovaerts, 2000). 

The analysis used measurements from 10 rain gauges in a small 
watershed, which represented a dense gauge network and a reliable data 

Fig. 11. Rainfall estimation errors of the inverse distance weighting interpolation method for different grid lengths at R1 and R2.  

Fig. 12. Maximum and minimum errors for different grid lengths at 
each gauge. 

Fig. 13. Errors of average watershed rainfall based on the inverse distance 
weighting interpolation method for gauge networks with different grid lengths. 
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Fig. 14. Hydrological simulation results of water floods in eight rainfall events with four rainfall input scenarios.  
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source. Here, we assume that the measured natural rainfall is the real 
rainfall without data correction. Although it is well known that rainfall 
amounts measured by means of ground gauges contain some negative 
biases, the evaluation of such uncertainty is not the purpose of this work. 
The findings of this study could provide a reference for rainfall 

estimation in neighboring regions with similar climatic and topographic 
conditions, and help improve the understanding of debris flow forma
tion conditions and forecasting. However, the feasibility of using a 
similar network in other debris flow regions is not guaranteed owing to 
potential regional differences. 

8. Conclusions 

Spatial variation of rainfall is a phenomenon that introduces large 
uncertainty in the forecasting of hydrological hazards (e.g., water floods 
and debris flows). This is particularly so for small mountainous water
sheds with complex orographic conditions. In this study, 52 rainstorm 
events in a typical small mountainous watershed were used to analyze 
the relationships between event rainfall and both the elevation and the 
density of rain gauges. 

The high correlation and consistent similarity in rainfall amounts 
between gauges at similar elevation suggested that elevation is the 
primary factor affecting rainfall variation in this region. Results showed 
that the mean event rainfall and elevation exhibited an exponential 
relationship. Moreover, rainfall amount varied with elevation in each 
event. Thus, an empirical rainfall–elevation relation was proposed for 
rainfall estimation. Although the accuracy of this method was poorer 
than that of commonly used interpolation methods, it is advantageous in 
that it requires only the rainfall data recorded at the watershed outlet. 

In addition, the rainfall interpolation uncertainties and effects of 
gauge distance were evaluated. All interpolation results showed a 
similar error tendency and demonstrated that estimating rainfall dis
tributions at high elevations is more difficult. Error analysis indicated 

Fig. 15. Errors of peak flow discharge and total flow amount for each scenario.  

Fig. 16. I-D rainfall thresholds determined using rainfall from different gauges 
and calculated using Eq. 5. 

Fig. 17. The 1-, 12-, and 24-h rainfall amounts required to trigger debris flows, and the errors associated with each approach.  
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that rain gauges should be placed carefully when the horizontal distance 
between gauges is > 3.0 km. 

Selecting an inappropriate rain gauge for obtaining data caused 
significant uncertainty in simulations of water flood discharge and in 
identification of rainfall thresholds for debris flows. Using a gauge 
located at the mouth of the watershed, or in the headwater region, 
produced poorer performance in terms of flow simulation and empirical 
threshold identification for debris flows, when compared with the esti
mation method proposed in this work. This suggests that the represen
tativeness of the rain gauge should be considered carefully, and that 
clear understanding of the spatial variation of rainfall could help in 
estimation of the rainfall conditions required for initiation of hydro
logical hazards. 
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