
1.  Introduction
Debris flows are one of the most common geological disasters in mountainous areas (Iverson, 1997). The mate-
rials and water sources of debris flows mainly come from loose materials formed by shallow landslides or river 
sediment and runoff formed by rainfall. In recent decades, shallow landslides and debris flows have occurred 
frequently and may be associated with the persistently expanding climatic change in many areas of the world 
(Bagwari et al., 2021). In China, for instance, during the 10 years from 2010 to 2019, an average of approxi-
mately 830 catastrophic debris flow events was reported each year. These disasters seriously affect the safety of 
the lives and property of people in mountainous areas. Due to the catastrophic damage caused by debris flows, it 
is beneficial to predict the potential of debris flow occurrence in advance. However, one characteristic of debris 
flows is the abrupt way they occur, with limited precursory signals (Swanson & Swanston, 1976). The operational 
prediction of such events remains a very large challenge.

The debris material formed by shallow landslides is one of the main sources of debris flows. Predicting the 
volume, occurrence time and location of shallow landslides is very important for the analysis of debris flow 
disasters and has an important influence on the scale of debris flow formation and the severity of the disaster. 
Previous studies have proposed a variety of empirical or theoretical approaches for predicting shallow landslides 
and slope instability (e.g., Arnone et al., 2011; Bout et al., 2018; Guo et al., 2020; Shen et al., 2018; Subramanian 
et al., 2020) and applied them to different shallow landslides or debris flow scenarios. These approaches can be 
classified into two major categories: statistically based models and physically based models (Bout et al., 2018). 
The statistically based models consider the relationship between the geomorphological, topographically depend-
ent hydrological parameters (e.g., slope, curvature, rainfall intensity, and vegetation cover) and the likelihood 
of debris flow occurrence (e.g., Caine, 1980; Crosta, 1998; Guzzetti et al., 2007, 2008; Larsen & Simon, 1993; 
Terlien, 1998). The statistically based models have the advantages of simple data acquisition, long-term predic-
tion and good large-scale applicability. However, as indicated by recent studies (e.g., Segoni et al., 2018; Zhang 
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et al., 2019), they are still limited in terms of case-specific feature descriptions and cannot be applied to address 
nuanced questions (e.g., root mechanical reinforcement and slope instability caused by changes in matrix suction 
and pore water pressure) and the dynamics of the shallow landslide triggering process.

The physically based models attempt to link the hydrological process and infinite slope stability analysis, and the 
factor of safety (FOS, i.e., the ratio between resisting and driving forces) is commonly adopted as an indicator to 
express the mechanical state of the source soil material and debris flow susceptibility. Therefore, many models (e.g., 
Arnone et al., 2011; Borga et al., 2002; Burton & Bathurst, 1998; Casadei et al., 2003; Dietrich & Montgomery, 1998; 
Malet et al., 2005; Moonhyun et al., 2019; Pack et al., 1998; Subramanian et al., 2020; Wu & Sidle, 1995) that 
combine steady-state shallow underground flow with infinite slope stability analysis have been developed to evalu-
ate the effects of soil moisture dynamics on the occurrence times, rates, volumes and locations of shallow landslide. 
Iverson  (2000) developed a model that couples transient infiltration with infinite slope stability considering the 
effects of pore pressure on hill-slope stability and applied the Transient Rainfall Infiltration and Grid-Based Regional 
Slope-Stability Model (TRIGRS) (e.g., Baum et al., 2002; Godt et al., 2008; Morrissey et al., 2008). To account for 
the different dynamics of surface and subsurface flow, more rigorous models, such as the coupled models combining 
two or three-dimensional Richards equation solvers and infinite slope stability analysis, have been developed (e.g., 
Camporese et al., 2010; Rigon et al., 2006; Šimůnek et al., 2016), which often require more computational power. 
However, the traditional FOS-based model can still be considerably improved; for example, it still cannot reproduce 
the destruction process of landslides and the force interaction between soil columns (Subramanian et al., 2020).

Lehmann and Or (2012) embedded mechanical thresholds resembling concepts of self-organized criticality (SOC) 
into a hydro-mechanical framework, which simulated a landslide caused by rainfall on a hillslope composed of 
many interacting soil pillars, and successfully realized the progressive failure process of hillside soil pillars. As 
described in the SOC framework (Bak et al., 1988), a critical state can be reached through the interaction of load 
or mass redistribution among many elements and is often used to simulate various sudden large-scale release 
phenomena, such as large-scale glacier disintegration and landslides (e.g., Faillettaz et al., 2011; Hergarten & 
Neugebauer, 2000; Piegari et al., 2006). In their study, after soil base failure, failure of mechanical bonds inter-
connecting soil columns may cascade and trigger an abrupt release of landslides. Due to the computational 
burden of modeling for large systems, the model of Lehmann and Or (2012) is limited to small slopes. Then, 
Von Ruette et al. (2013, 2014) extended a simplified version of the landslide hydro-mechanical triggering model 
of Lehmann and Or (2012) to larger scales encompassing an entire catchment. Fan et al. (2015, 2020) further 
improved the LHT model by constructing a physics-based load redistribution rule and combining it with the 
model of Perla et al. (1980) to build a general landslide-debris flow assessment model (Fan, Lehmann, Mcardell, 
& Or, 2017) and analyzed the effects of the temporal patterns of rainfall intensity and antecedent soil mechanical 
damage on shallow landslide triggering.

However, the above models based on LHT are established for shallow landslides, assuming that the damage 
surface of the soil is on the bedrock. Obviously, this limits the scope of application of the LHT model. There are 
many cases, such as the debris flow in the Jiangjia gully watershed (Hu et al., 2011), showing that the failure 
surface of the slope soil is not located at the position of the bedrock. The soil layer of the Jiangjia gully watershed 
is relatively thick, and there has never been a recorded shallow landslide with a slip surface at the bedrock inter-
face. Field surveys and long-term monitoring results show that the soil instability in the Jiangjia gully watershed 
is mainly manifested in the weathering and spalling of loose materials on the ground caused by rainfall and that 
the sliding surface is not at the rock-soil interface (Hu et al., 2011; Wang et al., 2009). The LHT model applies 
well to shallow landslides where the slip surface is at the bedrock interface (Fan et al., 2016; Fan, Lehmann, & 
Or, 2017). However, this model cannot be directly applied to slope soil instability like that of the Jiangjia gully 
watershed type. Therefore, it is necessary to further develop this type of model. At present, some search methods 
or algorithms of the landslide sliding surface have been developed (Chen et al., 2019). Based on infinite slope 
stability model, Formetta et al. (2016) calculated landslide depth by examining each potential slip surface. Lu 
et al. (2012) and Chen et al. (2020) proposed a local FOS method to determine sliding surface, which does not 
assume any shape for the sliding surface. Recently, Bellugi, Milledge, Dietrich, McKean, et al. (2015), Bellugi, 
Milledge, Dietrich, Perron, et al. (2015) and Bellugi et al. (2021) proposed a new approach that combines multi-
dimensional slope stability model with a deterministic graph-theoretic landslide search algorithm.

In this paper, based on the LHT model, the limit analysis method was employed to search for the sliding surface of 
a single soil column, and a depth-resolved model that can dynamically determine a sliding surface was proposed. 
Then, the D-LHT model was combined with the SWAT model to establish a new model to predict shallow 
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landslides for both long-term and large-scale watershed landslide prediction. This paper is organized as follows. 
First, in Section 2, the coupling model strategy is briefly introduced, including the hydrological model and slope 
failure model, and detailed explanations of the implemented equations are provided. A classic SWAT model was 
employed (e.g., Maharjan et al., 2013; Mehan et al., 2017) to simulate the slope water collection and seepage 
process caused by rainfall, which considers the detailed regulation of vegetation on the hydrological process and 
provides time-series data of the runoff and seepage flow of the slope for the subsequent stability model. Second, 
in Section 3, the acquisition and source of model parameter information are introduced, and the sensitivity of 
the parameters is analyzed, which improves the simulation accuracy of the model. Then, in Section 4, the model 
is verified with the monitoring data of debris flows that broke out in 2009 in the Jiangjia gully. In addition, the 
limitations of the model and the future improvements are discussed. Finally, in Section 5, the effects of antecedent 
rainfall and root strength on shallow landslides are discussed.

2.  Numerical Modeling Strategy
In this study, a hydrological model was combined with a physical slope model to simulate the instability of 
rainfall-induced slope movements. The movement of the hydrological slope was modeled through the hydrolog-
ical module in the open-source program SWAT model, considering the hydrological processes such as rainfall 
infiltration, runoff from slopes, vegetation interception, and evapotranspiration in detail. First, the SWAT model 
was used to calculate the spatial distribution of the soil moisture content and runoff depth at different times in 
the study area. Then, the calculated soil moisture content and runoff depth were imported into the slope stability 
model to predict the spatiotemporal stability of shallow landslides.

The physical slope stability model proposed in this paper refers to the concept of the LHT model (e.g., Lehmann & 
Or, 2012; von Ruette et al., 2013), which uses the concept of SOC to describe material failure. The D-LHT model 
retains the load redistribution, root reinforcement, soil column failure threshold features of the LHT model, and is 
modified as follows: (a) The slip surface is not limited to the soil-bedrock interface, and it is assumed that there 
are multiple potential sliding surfaces in the depth direction (including the soil-bedrock interface). The depth of 
the wetting front in the soil layer is calculated, and iterative calculation is used to find the most unfavorable sliding 
surface. (b) The SWAT model is used to simulate the hydrological process of the slope, which considers hydrological 
effects such as vegetation evapotranspiration, canopy interception, and transpiration. (c) The model considers that 
vegetation enhances the shear and tensile strength of the soil to different degrees at different depths. The integrated 
model simulates the rainfall-triggered source soil material instability of debris flows, accounting for the spatial and 
temporal hydrological dynamics that influence slope failure. A flow chart of the model is shown in Figure 1.

2.1.  Hydrological Process

SWAT (USDA) is an open source, semi-distributed, semi-physical watershed model that has been widely used in 
continuous time series hydrological process simulation. The SWAT model divides a research basin into several 
sub-basins, and includes meteorological information, hydrological response units (HRUs, the smallest hydrologi-
cal calculation unit in the model, combining a unique land use type, soil type and slope type), groundwater, river 
courses, and so on (Arnold et al., 2012). First, the various types of discharges are calculated on the hydrological 
response unit scale. Then the discharges are summarized at the sub-basin level and finally flow through the river 
channel to the water outlet of the basin. The entire water circulation system follows the water balance law, and 
the equation is expressed as: 

sw𝑡𝑡 = sw0 +
∑𝑖𝑖

𝑖𝑖=1

(

𝑅𝑅 −𝑄𝑄surf − 𝐸𝐸𝑎𝑎 −𝑤𝑤seep −𝑄𝑄gw

)

� (1)

where 𝐴𝐴 sw𝑡𝑡 denotes the end water content of a time step (mm), 𝐴𝐴 sw0 is the soil moisture content at the previous inte-
gration time step (mm), t represent the time step, 𝐴𝐴 𝐴𝐴 is the total precipitation in step i (mm), 𝐴𝐴 𝐴𝐴surf denotes the total 
surface runoff in step i (mm), 𝐴𝐴 𝐴𝐴𝑎𝑎 and 𝐴𝐴 𝐴𝐴seep represent the water volume lost via evapotranspiration and seepage in 
step i (mm), and 𝐴𝐴 𝐴𝐴gw is the total underground water in step i (mm). More details of the hydrological model are 
described in Appendix A.

2.2.  Slope Soil Material Stability Modeling

This slope stability model divides the slope soil material of the watershed into an assembly of regular 
hexagonal-shaped soil columns interconnected by mechanical bonds (like the spring-block models) (Lehmann & 
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Or, 2012), as shown in Figure 2. Each hexagonal column has the same distance from the adjacent grid and has 
isotropic geometric characteristics.

In this model, the limit analysis method is used to iteratively calculate the most unfavorable sliding surface of 
the soil column (in Section 2.2.4) and consider the influence of hydrology and vegetation on soil mechanical 

Figure 1.  Numerical model strategy and flowchart. First, the basic parameters (such as the rainfall intensity, DEM elevation 
and soil parameters), were input Soil and Water Assessment Tool model to calculate soil moisture content and surface runoff 
during each time step. Then, the soil moisture content and surface runoff are input into the D-LHT model to calculate the 
failure process of the soil column.
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behavior. In the event of rainfall, seepage water gradually changes the weight and strength of the soil column, 
thereby affecting the change in the sliding surface of the soil column. On different sliding surfaces, the shear 
strength of vegetation to soil is different.

2.2.1.  Depth of the Wetting Front

The wetting front is the interface between the wet soil layer and the dry soil layer formed by the upper soil body 
becoming wet due to rainfall infiltration. The wetting front divides the soil into an upper humid area and a lower 
non-humid area. The humid area may reduce the suction of the soil matrix, thereby reducing the shear strength of the 
soil. The formula proposed by Mein-Larson is used to calculate the depth of the wetting front. The model assumes 
that the initial soil moisture content and the soil moisture content in moist areas during rainfall infiltration are evenly 
distributed and the wet part is saturated (Mein & Larson, 1973). This assumption may increase the probability of 
landslides, leading to an increase in the landslide volume, so the simulation results are conservative (L. Chen & 
Young, 2006). The model is simple and proven to be effective. The formula of the wetting front is as follows:

𝑍𝑍𝑑𝑑 =
𝐼𝐼

(𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑖𝑖)cos 𝛼𝛼
� (2)

where 𝐴𝐴 𝐴𝐴𝑑𝑑 is the depth of the wetting front (mm), 𝐴𝐴 𝐴𝐴  is the total infiltration of water (mm), 𝐴𝐴 𝐴𝐴 = sw𝑡𝑡 − sw0 , 𝐴𝐴 𝐴𝐴𝑠𝑠 is the 
maximum volumetric water content (m 3/m 3), and 𝐴𝐴 𝐴𝐴𝑖𝑖 is the volumetric soil water content at the previous integration 
time step (m 3/m 3).

2.2.2.  Force Evolution of Single Soil Columns

A local FOS-like estimate is used to assess the mechanical conditions and is applied to each individual column. 
The total sliding force 𝐴𝐴 𝐴𝐴𝑑𝑑 of the soil column on the slip surface is defined as follows:

𝑊𝑊𝑑𝑑 = 𝑊𝑊 − 𝜏𝜏𝑇𝑇 + 𝜏𝜏rf� (3)

where 𝐴𝐴 𝐴𝐴𝑇𝑇  is the stress from the upslope columns or downslope columns when the soil column is unstable (in 
Section 2.2.4). The total mass M of a soil column and the downslope force component 𝐴𝐴 𝐴𝐴  of the soil column on 
the slip interface are given as:

𝑊𝑊 =
𝑀𝑀g sin 𝛼𝛼

𝐴𝐴𝐻𝐻∕cos 𝛼𝛼
= 𝐻𝐻𝑑𝑑[𝜃𝜃𝜃𝜃𝑤𝑤 + (1 − 𝜓𝜓)𝛾𝛾𝑟𝑟]sin 𝛼𝛼 cos 𝛼𝛼� (4)

where g is acceleration due to gravity, 𝐴𝐴 𝐴𝐴𝐻𝐻 denotes the hexagonal cross-section of a soil column, 𝐴𝐴 𝐴𝐴𝑑𝑑 represents the 
distance from the sliding interface to the ground surface (explained in detail in Section 2.2.4), 𝐴𝐴 𝐴𝐴 is the volumetric 
water content, 𝐴𝐴 𝐴𝐴 is the porosity, and 𝐴𝐴 𝐴𝐴𝑤𝑤 and 𝐴𝐴 𝐴𝐴𝑟𝑟 are the bulk densities of the water and soil minerals, respectively.

Figure 2.  (a) The slope is discretized into hexagonal soil pillars, and each soil pillar is layered in depth; (b) Schematic diagram of the stress action between soil pillars. 
Along the failure direction of the soil columns (red), the uphill soil columns (orange) and the soil columns on both sides are subjected to tensile stress provided by the 
roots, while the downhill soil columns (blue) are subjected to compressive stress. (c) Conceptual illustration of the stress on a single soil column. The model can be 
divided into three horizontal layers according to the saturation state of the soil, and the following situations may arise: (i) All three layers are unsaturated. (ii) All three 
layers are saturated. (iii) The upper and middle layers are unsaturated, and the lower layer is saturated. (iv) The upper layer is saturated, and the middle and lower layers 
are unsaturated. (v) The upper and lower layers are saturated, and the middle layer is unsaturated in panel (c).
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𝐴𝐴 𝐴𝐴rf is the shear stress of slope runoff and can be expressed as follows:

𝜏𝜏rf = 𝛾𝛾𝑤𝑤Hpond𝑆𝑆𝑓𝑓� (5)

where 𝐴𝐴 𝐴𝐴𝑓𝑓 is the slope of the soil column (mm/mm) and 𝐴𝐴 𝐴𝐴pond is the depth of runoff (mm), which is calculated by 
the SWAT model.

The shear stress 𝐴𝐴 𝐴𝐴𝑠𝑠 is a function of the soil column normal stress 𝐴𝐴 𝐴𝐴𝑛𝑛 and the weakening or reinforcing effects of the 
soil water and cohesion 𝐴𝐴 𝐴𝐴soil . According to Iverson et al. (2000) and Vanapalli et al. (1996), increasing soil water 
results in an increase in pore water pressure, modifying the soil internal strength and reducing the effective stress 
of the soil. That is, when rainfall infiltrates the slope soil, as the soil saturation gradually increases, the matrix 
suction gradually disappears, the pore water pressure gradually increases, or the groundwater level rises, thus 
reducing the shear strength of the soil. When the soil is in different saturation states (saturated and unsaturated), 
different formulas need to be used to calculate the shear strength of the soil. The soil saturation state is closely 
associated with rainfall, soil infiltration properties, and groundwater level etc. The schematic diagram of the soil 
saturation state is shown in Figure 2c. The calculation formula of 𝐴𝐴 𝐴𝐴𝑠𝑠 is as follows:

�� = �soil + (�� + �ℎ)tan�

+ �rs,� =

⎧

⎪

⎨

⎪

⎩

�soil + �root +
{

�sd[� �� + (1 − �)��]cos2 � − ℎ��� cos2 �
}

tan� , Saturation

�soil + �root +
{

�sd[� �� + (1 − �)��]cos2 � − Θℎ��
}

tan� ,Unsaturation

� (6)

where 𝐴𝐴 Θ is the effective water saturation, 𝐴𝐴 𝐴𝐴 is the pore size distribution parameter, 𝐴𝐴 𝐴𝐴ℎ is the shear strength as intro-
duced by Bishop (1960), 𝐴𝐴 𝐴 is the capillary pressure head, 𝐴𝐴 𝐴𝑠𝑠 is the height of the free water table in the soil column, 
and 𝐴𝐴 𝐴𝐴rs,𝑧𝑧 is the shear strength (as a function of depth) provided by roots. To incorporate the soil type information 
into the hydraulic landslide model, Lehmann and Or (2012) and Fan et al. (2015) used the pore size distribution 
parameter λ of the Brooks and Corey soil water retention model to describe the effect of soil type (soil texture 
level) on soil hydraulic properties. It has been proven that the inlet value and saturated hydraulic conductivity of 
the hydraulic function can be expressed as a function of the parameter λ (Lehmann & Or, 2012).

Brooks and Corey (1964) used the model to parameterize the hydraulic properties:

Θ =

(

𝜃𝜃 − 𝜃𝜃𝑟𝑟

𝜃𝜃𝑠𝑠 − 𝜃𝜃𝑟𝑟

)

⎧

⎪

⎨

⎪

⎩

Θ =
(

ℎ𝑏𝑏

ℎ

)𝜆𝜆

, |ℎ| ≥ |ℎ𝑏𝑏|

Θ = 1 , |ℎ| < |ℎ𝑏𝑏|

� (7a)

ℎ = −|ℎ𝑏𝑏|Θ
−1∕𝜆𝜆� (7b)

where 𝐴𝐴 𝐴𝐴 is the water content, 𝐴𝐴 𝐴𝑏𝑏 is the air-entry value, and 𝐴𝐴 𝐴𝐴𝑟𝑟 and 𝐴𝐴 𝐴𝐴𝑠𝑠 are the residual and maximum water contents, 
respectively. In Section 4.2, the possible values of λ are described in detail.

2.2.3.  Tensile and Compressive Effects of Neighboring Columns

The load of a failed soil column is redistributed to neighboring columns via mechanical bonds. As shown in Figure 2, 
when the central soil column slides along the sliding surface, it is blocked by the surrounding soil columns, and its 
excess sliding stress is transferred to the surrounding soil columns. Along the failure direction of the soil columns, the 
uphill soil columns and the soil columns on both sides are subjected to tensile stress, while the downhill soil columns 
are subjected to compressive stress. When 𝐴𝐴 𝐴𝐴𝑑𝑑  < 𝐴𝐴 𝐴𝐴𝑛𝑛 tan𝜑𝜑 , the column remains stable under the support of cohesion 
and soil strength. When 𝐴𝐴 𝐴𝐴𝑛𝑛 tan𝜑𝜑 𝜑 𝜑𝜑𝑑𝑑 , the soil column distributes excess stress to the adjacent soil columns. The 
formula for the load redistribution to lateral column stress after basal failure is as follows (Lehmann & Or, 2012):

𝜏𝜏𝑇𝑇 =
𝐴𝐴𝐻𝐻

𝐴𝐴𝑖𝑖 cos 𝛼𝛼
(𝑊𝑊𝑑𝑑 − 𝜎𝜎𝑛𝑛 tan𝜑𝜑 − 𝜏𝜏𝑅𝑅)� (8)

where 𝐴𝐴 𝐴𝐴𝐻𝐻 is the area of a soil column with a hexagonal cross-section, 𝐴𝐴 𝐴𝐴𝑖𝑖 is the intersection area between the two 
adjacent columns failure planes, and 𝐴𝐴 𝐴𝐴𝑅𝑅 is the residual soil strength after failure at the sliding surface.

It is evident that the topography determines the failure direction of the soil column and thereby the method (tensile 
or compressive) of the stress transmission of the soil column. Slope instability led to topographical changes, and 
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the inclination direction of soil column destruction changes accordingly. To 
simplify the stress transfer of the soil column, let us suppose that the central 
soil column can only slide in the specified six directions (the stress transfer is 
symmetrical). According to the least action principle, the central soil column 
is more inclined to apply compressive stress to the adjacent soil column with 
lower potential energy if it is unstable. Therefore, the method of Appendix B 
is adopted to judge the direction of instability and failure of the soil columns.

2.2.4.  Soil Column Failure

When the lateral tensile bonds (between the uphill and lateral columns) are 
all broken, the soil column must be stabilized by the downhill columns. 
However, when the compressive load imposed on the soil column exceeds its 
intrinsic compressive strength, the soil column is destroyed and released as a 
landslide (becomes “fluidized”) (e.g., Hu et al., 2011; Lehmann & Or, 2012). 
The soil fails when the external loads transmitted to the soil exceeds the soil 
stress limit threshold, which is determined by the nature and structure of the 
soil. The compressive strength is usually defined as (e.g., Goodman, 1980; 
Mullins & Panayiotopoulos, 1984):

𝜏𝜏𝑐𝑐 =

∑

𝐼𝐼

𝑁𝑁𝐼𝐼

∑

𝐼𝐼

𝐴𝐴𝐼𝐼

=
2𝑐𝑐soil cos(𝜑𝜑)

1 − sin(𝜑𝜑)
+

2 sin(𝜑𝜑) ∗ Θ ∗ ℎ

1 − sin(𝜑𝜑)
𝛾𝛾𝑤𝑤� (9)

where 𝐴𝐴 𝐴𝐴𝐼𝐼 and 𝐴𝐴 𝐴𝐴𝐼𝐼 are the compressive load and area acting on the column, 
respectively.

2.2.5.  Distance From the Sliding Surface to the Ground Surface

Based on Equations 2–7, the stress on the soil column in various phases was calculated, but the depth of the 
sliding surfaces 𝐴𝐴 𝐴𝐴𝑑𝑑 must be known. Different from the LHT model, this model assumed that any plane parallel to 
the bedrock surface may be a potential sliding surface. At the same time, the soil column may have only one most 
dangerous sliding surface. At different depths, the sliding force, shear resistance, and compressive strength of the 
soil are different (Lu & Godt, 2008). As the depth change, the force 𝐴𝐴 𝐴𝐴𝑇𝑇  from adjacent soil pillars changes with the 
contact area between adjacent soil pillars. Therefore, the FOS on the potential sliding surface of each soil column 
(in Figure 3) is calculated. The sliding surface with the smallest 𝐴𝐴 FOS is the most dangerous sliding surface. The 
factor of safety 𝐴𝐴 FOS can be denoted as follows:

FOS =
𝜏𝜏𝑠𝑠

𝑊𝑊𝑑𝑑

=
𝐻𝐻𝑑𝑑[𝜃𝜃𝜃𝜃𝑤𝑤 + (1 − 𝜓𝜓)𝛾𝛾𝑟𝑟]sin 𝛼𝛼 cos 𝛼𝛼 − 𝜏𝜏𝑇𝑇 + 𝜏𝜏𝑟𝑟𝑟𝑟

𝑐𝑐soil + (𝜎𝜎𝑛𝑛 + 𝜏𝜏ℎ)tan𝜑𝜑 + 𝜏𝜏rs,𝑧𝑧
� (10)

2.2.6.  Sensitivity Analysis of the Stability Model

The sensitivity analysis of parameters can help us more efficiently obtain high-confidence simulation results 
when it is difficult to obtain complete parameters in the study area. Thus, a sensitivity analysis is conducted on 
the parameters required by the model (Equations 2–9) to calculate the 𝐴𝐴 FOS , to determine the impacts of input 
parameters on the value of the safety factor and to obtain the key input parameters. In the univariate sensitivity 
analysis of the stability model, all initial parameters are kept constant, except for the parameters chosen for sensi-
tivity analysis (Table 1). Figure 4 shows the effect of each selected parameter change on the 𝐴𝐴 FOS . As illustrated 
in Figure 4, the cohesion and angle of internal friction of the soil are positively correlated with the 𝐴𝐴 FOS calculated 
by the model. While the depth of sliding surface Hd, Brooks and Corey parameter of the water retention curve 
λ, volumetric water content θ and slope α are inversely correlated with the 𝐴𝐴 FOS . The most sensitive parameters 
in this model are the Brooks and Corey parameter of the water retention curve λ, volumetric water content θ and 
slope α, which shows that the inherent mechanical properties of the soil and the topography play the most impor-
tant role in the stability of the slope. Therefore, the soil geotechnical parameters and digital elevation data in the 
study area are critical to the accuracy of the simulation.

Figure 3.  Infinite slope model for a variably saturated infinite slope with a 
weathered mantle. The red solid line is the most dangerous sliding surface and 
the red dashed lines are the potential sliding surfaces.
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3.  Overview of the Model and Input Parameters
3.1.  Watershed and Meteorological Characteristics

To test the performance of this model, the Jiangjia gully watershed in northeastern Yunnan Province in Southwest 
China (N 26°13′–26°17′, E 103°06′–103°13′), was selected as the research case. A 10 m × 10 m resolution digital 
elevation model (DEM) shows that the 48.6 km 2 basin exhibits large elevation changes, rising from 1,062 m to 
3,209 m. Based on the data from the debris flow observation station of the Institute of Mountain Hazards and 
Environment (IMHE) at the Chinese Academy of Sciences, the geological conditions in the area are very active, 
and the slopes are rich in provenance. From 1965 to 2010, a total of 497 shallow landslides and debris flow events 
were recorded by the debris flow observation station, with the highest frequency of 28 times a year and an average 
annual frequency of more than 10; the magnitude of the volume of the flows varies from 10 3 to 10 6 cubic meters 
(Guo et al., 2013). Landslides in this basin (Figure 5) mostly occur from June to September, with more than 80% 
of the total annual rainfall (ranging from 700 to 1,200 mm) occurring in this time (Hu et al., 2011).

3.2.  Vegetation Properties and Root Strength

The land use properties required for the modeling are from the global geo-information public product provided by 
China to the United Nations with a 30-m resolution (http://www.globalland-cover.com/) (Figure 5). In the study 
area, more than 80% of the area is in the zone 1,500–3,000 m above sea level, namely, mountainous subtropical 
evergreen broad-leaved forest and mountain temperate coniferous broad-leaved forest mixed forest. There is little 
forest in the basin, representing 12.3% of the total area of the basin, and grassland accounts for approximately 
57.0% of the total area. Cultivated land accounts for approximately 30.4%, and artificial surfaces account for 
approximately 0.3%.

The main tree species in the forest area in the basin are New albizia julibris-
sin (NAJ-arbor) and Coriaria sinica (CS-shrub). The roots result in different 
shear and tensile strengths at different depths. The experimental measure-
ment data of the roots come from a report by Chen et al. (2019). According to 
Waldron-Wu, based on the Mohr–Coulomb, the root soil shear strength model 
is established (e.g., Pollen & Simon, 2005; Preti, 2006; Waldron, 1977; Wu 
et al., 1979; ):

𝜏𝜏rs,𝑧𝑧 = 1.2𝐾𝐾 ⋅ 𝑇𝑇𝑅𝑅 ⋅ 𝐴𝐴RAR� (11)

where K is a dimensionless correction parameter, 𝐴𝐴 𝐴𝐴𝑅𝑅 is the experimentally 
measured root tensile strength, and 𝐴𝐴 𝐴𝐴RAR is the ratio of the root area and the 
area with rooted soil. The increment of the root shear strength in soil with 
depth is shown in Figure 6. The reinforcement depths of the roots of NAJ 
and CS are approximately 1.6 and 0.8 m, respectively. In addition, due to 
the limited mechanical reinforcement effect of herbaceous plants on the soil 
and the sparse growth of herbaceous plants in the study area, the mechanical 
strengthening effect of the herbaceous plants on the soil is neglected in the 
simulation.Figure 4.  The influence of parameter changes on the FOS.

Table 1 
The Parameters of the Univariate Sensitivity Analysis

Parameters for sensitivity analysis Initial parameters Value range of parameters (±30%)

Distance from the sliding interface to the ground surface, Hd 1 m 0.6–1.4 m

Volumetric water content, θ 0.2 𝐴𝐴 m3∕m3 0.12–0.28 𝐴𝐴 m3∕m3

Pore size distribution parameter, λ 0.25 0.15–0.35

Bulk densities of the soil minerals, γr 1,500 𝐴𝐴 kg∕m3 900–2,100 𝐴𝐴 kg∕m3

Angle of internal friction, φ 22° 13.2–30.8°

Soil cohesion, 𝐴𝐴 𝐴𝐴soil 3,000 Pa 1,800–4,200 Pa

Hill slope, α 35° 21–49°

http://www.globalland-cover.com/
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3.3.  Soil Type and Properties

According to the U.S. Department of Agriculture classification system, the soil type and soil hydraulic properties 
(i.e., soil water retention and hydraulic conductivity) are determined by the fractions of sand, silt and clay miner-
als. From the soil class diagram (Figure 7), shows 2 types of soil (sandy clay loam and loam) of soil in the basin. 
The soil classes required for the model are from the website of the Food and Agriculture Organization of the 
United Nations, with a 250-m resolution (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/). The soil texture was mainly classified as loam and sandy clay loam 
(Figure 7). This is consistent with the field sampling survey value of Hu et al. (2011).

Figure 5.  Location of the catchment. (a) The yellow area shows the location of Yunnan Province in China, and the red region is the Dongchuan district, Kunming city. 
(b) The red area is the study area, situated in Kunming city. (c) Digital elevation of the study area. (d) Land use (four types). (e) Soil classes and (f) Thickness of soil 
layer (Hengl et al., 2017).

Figure 6.  Root shear strength and tensile strength at different depths.

http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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Abundant evidence shows that cohesion and internal friction angle change with the variation in water content 
(e.g., Matsushi & Matsukura, 2006; Mouazen et al., 2002). To improve the accuracy of the model, the influence 
of the water content on the cohesion and internal friction angle is considered. The relationships between cohe-
sion and internal friction angle and water content are shown in Figure 8. The data come from the report of Hu 
et al. (2011). Figure 8 shows that the cohesion and internal friction angle in the Jiangjia gully exhibit a good 
correlation.

4.  Numerical Modeling Results and Analysis
The cohesion 𝐴𝐴 𝐴𝐴soil (including the root strength), the internal friction angle 
φ, the soil bulk density 𝐴𝐴 𝐴𝐴𝑟𝑟 , the maximum water content 𝐴𝐴 𝐴𝐴𝑠𝑠 = 0.33 and the 
residual water content 𝐴𝐴 𝐴𝐴𝑟𝑟 = 0.03 on which this article is based are availa-
ble in Hu et al. (2011) and Chen et al. (2019). And the air-entry value 𝐴𝐴 𝐴𝑏𝑏 = 
0.902 m is taken from the results of the  experimental measurements by the 
IMHE. However, the soil moisture content θ and soil type parameter λ usually 
need to be calibrated. Therefore, in this chapter, the hydrological process is 
calibrated. Then, the best fit result of the soil type parameter λ is simulated. 
Finally, the performance of the model is evaluated.

4.1.  Hydrological Model Calibration

It is necessary to note that proper model calibration is very important to 
reduce the error of the model output (e.g., Chen et  al.,  2020; Maharjan 
et al., 2013). The amount of observed runoff was used to calibrate the hydro-
logical process. In this study, the free program swap-cup provided by the 
SWAT model official website was used to calibrate the hydrological runoff. 

Figure 7.  Soil texture diagram. There are five soil combinations of the ratio of clay, sand and silt in Jiangjia gully, as shown 
in Figure 5e. According to the U.S. Department of Agriculture classification system, there are two soil types: sandy clay loam 
and loam.

Figure 8.  The relationships between the cohesive force 𝐴𝐴 𝐴𝐴soil and internal 
friction angle φ and water content (Hu et al., 2011).
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The calibrated model parameters are shown in Table 1, and the calibration results are shown in Figure 9. A 
comparison of the results shows that the calibration results exhibit satisfactory agreement with the observed 
results. The Nash-Sutcliffe Efficiency coefficient (NSE) is 0.66, and the Pearson Correlation coefficient (R 2) is 
0.86. Through the calibration of the hydrological process, the correctness of the soil moisture content is guaran-
teed to a certain extent. In addition, the calibrated parameters were used to invert the soil moisture content in the 
basin in 2006, as shown in the inset of Figure 9. This figure compares the simulated and observed soil moisture 
contents from 23 June to 25 August 2006. The results showed that the simulated and monitored soil moisture were 
basically consistent (Zhuang et al., 2015). In conclusion, the results of this simulation are reasonable.

Figure 9 also shows the changes in soil moisture content in 2009 as a numerical estimate. The average soil mois-
ture reached a maximum of 29.5% on August 4. The only shallow landslides event recorded in 2009 also occurred 
on this day. In addition, there was almost no rain in the study area before June. The average moisture content of 
the soil was kept below 15.0% for a long time and was only approximately 4.3% at the lowest. However, the rain-
fall reached 51.2 mm/day (rainstorm level) on June 26, which was roughly equivalent to the rainfall on August 4 
(57.7 mm/day). Although the soil water content increased sharply after heavy rain, reaching 2 times that before 
rain, the soil water content was still low due to long-term drought and the long-term lack of water in the soil. 
Therefore, under heavy rainfall, there were still no shallow landslides or debris flows in the study area. This also 
shows that it is difficult to accurately predict shallow landslides or debris flow events based on single-day rainfall 
and ignoring the influence of soil moisture content on soil mechanical properties (Table 2).

4.2.  Best Fit Scenario for Estimating Soil Type Parameters λ

Using the numerical modeling approach described in Section 2 and the parameters in Section 3, rainfall-induced 
shallow landslides were simulated. The duration of the simulation is set to 123 days, from 1 June 2009, to 1 
October 2009. The simulation results are consistent with the observations, and shallow landslides occurred in the 
Jiangjia gully only on August 4. Therefore, we focus on the analysis of the simulation results on August 4, that is, 
the volume and spatial distribution of landslides.

Loam and sandy clay loam are the two main types of soils in the study area (in Section 3.3). Loam accounts for 
approximately 58.9% of the total area, and sandy clay loam accounts for approximately 41.1%. To fit the best soil 
type parameter λ in the study area, it is assumed that the parameter λ is constrained by the values of 𝐴𝐴 𝐴𝐴𝐿𝐿  = 0.137 
to 0.355 for loam and 𝐴𝐴 𝐴𝐴SCL = 0.125 to 0.502 for sandy clay loam according to Rawls et al. (1982). The λ value 
of different permutations and combinations were simulated. The simulation scheme is shown in Table 3. The 
simulated and actual landslide areas within each sub-watershed were compared. The correlation coefficients 
between simulated and actual landslides under different soil types are calculated, as shown in Figure 10. When 
the soil type parameters are 𝐴𝐴 𝐴𝐴𝐿𝐿  = 0.325 and 𝐴𝐴 𝐴𝐴SCL = 0.3 , the simulation result are the closest to the inventory data, 
NSE = 0.8 and R 2 = 0.93. Obviously, the soil type has a great influence on the landslide volume, which was also 
reported in previous studies (Von Ruette et al., 2013). When the loam soil type parameter 𝐴𝐴 𝐴𝐴𝐿𝐿 <0.25, NSE <0, the 
simulation error is large.

Figure 9.  SWAT model runoff calibration results, correlation coefficient: NSE = 0.66, 𝐴𝐴 𝐴𝐴2  = 0.82 (when NSE >0.5 and 𝐴𝐴 𝐴𝐴2 >0.6, the simulation results are usually 
perceived to be credible). Inset shows the comparison between simulated and measured soil moisture content for 22 June to 25 August 2006.
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4.3.  Comparison of the Shallow Landslides List of Observed and Simulated

To verify the predictive performance of this model at the landslide scale, the density-based spatial clustering and 
other algorithms were employed to cluster adjacent damaged soil columns together to generate landslide poly-
gons, which enables one to eliminate outliers from the data set. The area and volume of the shallow landslides 
were calculated after clustering, and these results were compared with the observed shallow landslides (the data 
are from the Jiangjia gully debris flow observation station, including the elevation difference of the DEM before 
and after the landslide), as shown in Figure 11. Figure 12 shows the cumulative distribution function (CDF) of 
the simulated single landslide area and the measured landslide scar area from inventory data. The results show 
that the simulated soil depths are in good agreement with measured landslide thickness. In addition, the entire 
watershed was classified into 16 sub-watersheds depending on watershed topography, and the depth, area, and 
volume of the shallow landslide soil column in each sub-basin were calculated (Figures 13 and 14). The results 
(in Figure 13) show that both the landslide inventory and simulation reproduce the power law relationship.

A comparison of the simulated landslide depth with the observed landslide depth of each sub-watershed is shown 
in Figure 13. The results show that the simulated landslide soil depth is 0.72–1.77 m, whereas the observed land-
slide soil depth is 0.55–1.65 m. The average simulated and observed land slide soil depths are 0.764 and 0.729, 
respectively. The simulated landslide depths are slightly deeper than the actual landslide depths, which could be 
related to the overestimation of the wetting front depth. In this model, only the one-dimensional vertical infiltra-
tion considered, not the lateral flow of groundwater. The benefit of this is simplification is a reduction in compu-
tational costs, the downside being that the depth of the wet front may be overestimated, resulting in a deeper 
predicted landslide depth. Figure 14 shows a comparison of landslide area and volume. The area is the area of the 
clustered landslides, and the volume is the product of the average depth of the failed soil column and the area of 
the clustered landslides. The results show that the simulation is satisfactory. The correlation coefficients of the 
simulated and actual landslide volumes and areas are NSE = 0.81 and 0.80 and R 2 = 0.94 and 0.93, respectively.

4.4.  Validation of the Numerical Results

To further evaluate the performance of the model, the shallow landslide was 
simulated with rainfall during the two-year period 1999–2000, using the 
parameters calibrated above. According to the observation data, landslide 
events occurred on a total of 16 days in 1999–2000. The simulation results 
show that disaster events occurred on a total of 15 days in 1999–2000. The 

Table 3 
Parameter λ Setting Scheme of the Soil Spatial Variability

Soil type Soil type parameter λ

Loam (𝐴𝐴 𝐴𝐴𝐿𝐿 ) 0.2, 0.225, 0.25, 0.275, 0.3, 0.325. 0.35

Sand clay loam (𝐴𝐴 𝐴𝐴SCL ) 0.2, 0.3, 0.4, 0.5

Table 2 
Calibrated Model Parameters and Value Ranges

Category Parameter Description Min Max. Calibrated value

Runoff CN2/C SCS runoff curve number (%) 35 98 41.3

OV-N Manning's ‘‘n” value for land cover to estimate overland flow (%) 0.01 30 15.0

CANMX Maximum canopy storage (mm) 0 100 30.0

SURLAG Surface runoff lag time (hr) 0 24 12.0

Groundwater ALPHA_BF Baseflow alpha factor (shallow aquifer) 0 1.0 0.1

GWQMN Threshold depth of water in the shallow aquifer required for return flow to occur (mm) 0 1000 450

REVAPMN Minimum depth of water in shallow aquifer for re-evaporation to occur 0 200 180

GW_DELAY Groundwater delay (days) 0 450 72.0

GW_REVAP Groundwater ‘‘revap” coefficient 0.02 0.2 0.07

SOL_AWC() Available water capacity of the soil layer (mm/h) 0 1 0.7

SOL_K()/ 𝐴𝐴 𝐴𝐴sat Saturated hydraulic conductivity (mm/h) 0 900 108.3

Soil/Plant EPCO Plant uptake compensation factor 0 1 0.9

ESCO/ 𝐴𝐴 𝐴𝐴𝑠𝑠
′′ Soil evaporation compensation factor 0 1 0.7

Reach CH_K2 Effective hydraulic conductivity in main stream alluvium (mm/hr) 0.01 500 150.0

CH_N2 Manning's “n” value for the main stream 0 0.3 0.09
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occurrence times of 13 debris flows are consistent with the observation data, and the accuracy of the occurrence 
time of debris flow disaster prediction is 81.25%. Figure 15 shows that the simulation results misreport two land-
slide events on 23 July 1999, and 3 September 1999, and miss three landslide events on 5 August 1999, 19 June 
2000, and 6 July 2000. Figure 16 shows the relationship between the observed and the predicted volumes. The 
error in the volume of the shallow landslide volume predicted by the model is in the range of −40% to +50%.

Although the simulation results of the model still deviate from the observation data and may miss small-scale 
debris flow events, this is unavoidable and is related to many factors (e.g., soil parameters, climate, and rainfall). 
The deviation of rainfall data is an important source of forecast error. The Jiangjia gully watershed has a large area, 
and there are significant differences in local rainfall in the region. In this study, the average rainfall collected by 
three rainfall devices distributed at different locations in the watershed was used (in Figure 11). The error formed 
using the average rainfall may be an important reason for the deviation in the simulation prediction results. In 

Figure 10.  Numerical results of the landslide area correlation coefficients. The case of NSE <0 is not shown in the picture.

Figure 11.  Comparison of model and observed landslide depth and distribution. The black numbers are sub-basin numbers 1–16.
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addition, according to the historical observation data, the volumes of these 
3 disasters, which occurred on 5 August 1999, 19 June 2000, and 6 July 
2000, were relatively small, with shallow landslide volumes of 0.8 × 10 4 m 3, 
7.24 × 10 4 m 3, and 6.3 × 10 4 m 3, respectively. Due to the large watershed 
area of Jiangjia gully, there are still deposits left over from shallow landslides 
in the channel. Not every debris flow event triggers a new shallow landslide, 
especially small-scale debris flow events. This may cause the model to fail 
to accurately predict this type of event. Because this is a catchment-scale 
model, this model does not aim to predict the volume of shallow landslides 
very accurately but aims to be consistent regarding the order of magnitude. 
Therefore, the simulation results of the model are satisfactory.

Finally, we would like to emphasize that although the established numerical 
model simulates shallow landslides caused by rainfall well, its limitations 
and particularities must be explicitly understood (Subramanian et al., 2020). 
First, to obtain better prediction results, complete and accurate soil physical 
parameters and rainfall data are needed. Second, in our model, soil pillars 
may still be damaged along the soil-rock interface, so soil depth is still impor-
tant. Third, the SWAT model is semi-empirical but proves to be effective for 
the purpose of this study. In addition, in the process of calculating soil insta-
bility in each rainfall time step, 1 day's rainfall is considered the application 
condition. The progressive instability process of the landslide in the current 

state is calculated until the soil column reaches static equilibrium, and then start the next rainfall time step starts. 
The purpose is to achieve long-term forecasting, over months or even a year. Therefore, the time scale of rainfall 
is daily in this simulation (e.g., Godt et al., 2012; Kuriakose et al., 2010; Subramanian et al., 2020). However, the 
destruction of shallow landslides usually takes a short time and may even occur within a few seconds. Therefore, 
to improve the prediction efficiency and accuracy, it is also necessary to establish a prediction model with a 
shorter time scale (e.g., hour-scale, minute-scale or second scale) and to couple it with this model.

5.  Discussion
In this section, the sensitivity of analytical models to rainfall and root strength is discussed by establishing artifi-
cial rainfall patterns and root strengths, and the error of the model is analyzed.

Figure 12.  Cumulative distribution of the simulated landslide area and the 
measured landslide scar area from inventory data.

Figure 13.  Comparison of the simulated and observed landslide depths; each point represents a soil column. Sub3-N and Sub3-O represent the numerical and observed 
soil column failure depths in sub-watershed 3, respectively. The inset is a boxplot of the depth of the landslide soil column. The average failure depth of the simulated 
and observed soil column is 0.764 and 0.729, respectively.



Water Resources Research

JIANG ET AL.

10.1029/2022WR032716

15 of 25

5.1.  The Effect of Same-Day Rainfall Intensity on Landslides

Three landslide events were selected randomly, 16 July 1999, 24 June 2014, and 4 August 2009, to simulate the 
effect of different rainfall intensities on the same day on the landslides volume. The initial water contents of the 
three landslides events are 0.126, 0.105, and 0.097, respectively. Figure 17 shows the effect of different same-day 
rainfall events on landslide volume. The results showed that the landslide volume increased with the same-day 
rainfall. The initial soil moisture content significantly affects the volume of the landslides. The higher the initial 
soil moisture content is the larger volume of the landslide. It can be expected that under dry conditions (unsatu-
rated), the shear strength of the soil mass is higher, reducing the possibility of landslides.

Figure 14.  Comparison of the simulated and observed landslide areas and volumes. The results show that the simulation 
results are satisfactory, the landslide volume correlation coefficients are NSE = 0.81 and R 2 = 0.94; the landslide area 
correlation coefficients are NSE = 0.8 and R 2 = 0.93.

Figure 15.  Rainfall and average soil moisture content in the 2 years of 1999–2000 (daily). The model predicted and observed shallow landslides in the watershed 
occurred on the days marked by brown diamonds and magenta circles, respectively.
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5.2.  The Effect of Antecedent Rainfall on Landslides

While the rainfall infiltration effects on landslides or shallow landslides have 
been studied extensively, no consensus has emerged about the antecedent 
rainfall on shallow landslides (e.g., Aleotti, 2004; Brand, 1984, 1992; Jemec 
& Komac, 2013; Ma et al., 2014; Rahardjo et al., 2007; Rahimi et al., 2011). 
Obviously, antecedent rainfall has an important effect on shallow landslides 
in the Jiangjia gully, but different antecedent rainfall values may have varying 
degrees of impact (Jonathan et al., 2006). This difference may be related to 
the effect of antecedent rainfall changes on the soil moisture content. It has 
been shown that as the initial soil moisture content before rainfall increases, 
matrix suction decreases, and thus the volume of landslides increases. To 
further explore the effect of antecedent rainfall on shallow landslides, first, 
the average soil moisture content was simulated under different previous 
rainfall patterns (in Figure 18). Taking the landslides event on 16 July 1999, 
as an example, 8 precipitation patterns were designed for a total of 20 days 

from 25 June 1999, to 15 July 1999, numbered No. 1 to No. 8. The total 

antecedent rainfall 𝐴𝐴 TP20 (𝐴𝐴 TPn  = 𝐴𝐴

𝑖𝑖=𝑛𝑛
∑

𝑖𝑖=1

𝑃𝑃𝑖𝑖 ) of these 8 rainfall patterns is 120 mm, 
and the weight of the antecedent rainfall 𝐴𝐴 AP20 gradually increases with the 
numbers No. 1–No. 8. The formula of antecedent rainfall 𝐴𝐴 AP20 was as follows 
(Woldemeskel & Sharma, 2016):

AP𝑛𝑛 =

𝑛𝑛
∑

1

𝑃𝑃𝑖𝑖𝐾𝐾
𝑖𝑖� (12)

𝐴𝐴 𝐴𝐴𝑖𝑖 is the rainfall on the i day before the landslides event, 𝐴𝐴 𝐴𝐴 is the decay factors (ranging from 0.4 to 1.0, Take 0.8 
in the study area), and n is the total number of days (Take 20 in this study).

Figure 18 shows the relationship between the weight of the antecedent rainfall and the initial soil moisture content 
before the rainfall on 16 July 1999. This show that with increasing weighted antecedent rainfall 𝐴𝐴 AP20 , the initial soil 
moisture before rainfall first increases and then decreases. Comparing the eight rainfall patterns, it can be seen that 
the larger the pre-weighted rainfall value, the more concentrated the rainfall is in the first few days of the landslides. 
Taking No. 8 as an example, the rainfall in the two days before the disaster accounted for 81% of the accumulated 

rainfall in the first 20 days, which led to a very low soil moisture content before 
July 13, even though rainfall occurred on the 14th and 15th. Even with higher 
intensity rainfall, the soil moisture content still did not reach a high value. The 
inset of Figure 18 shows the relationship between peak rainfall and cumula-
tive runoff (26 June–16 July 1999). The results show that the higher the peak 
rainfall, the higher the total cumulative runoff. The reasons is that the infiltra-
tion time is short, and the high-intensity rainfall are exceeding soil infiltration 
capacity and convert more water into surface runoff, which leads to a lower 
soil infiltration. A similar result was obtained in a study by Fan et al. (2020). 
Therefore, with increasing weighted previous rainfall, the initial soil moisture 
first increased and then decreased.

Figure 19 also shows the relationship between the pre-weighted rainfall and 
the volume of the landslides. As the pre-weighted precipitation increases, 
the volume of the landslides first increases and then decreases. The reason 
for this is that the landslide volume increases with the initial soil moisture 
content before rainfall. In summary, the pre-weighted rainfall can be used for 
the quantification of different pre-rainfall models, but the landslide volume 
does not increase with increasing pre-weighted rainfall but first increases to 
the peak and then decreases slightly. The above results confirm that early 
rainfall mainly controls the soil water content, affecting the volume of the 

Figure 16.  Relationship between the observed and simulated landslide 
volume from 1999 to 2000. Each point represents a landslide event, with a 
total of 15 landslide events.

Figure 17.  The relationship between different same-day rainfall intensities 
and landslides volumes. The brown, blue, and red dashed lines are the 
simulated fit lines of 16 July 1999, 24 June 2014, and 4 August 2009. The 
initial soil moistures are 𝐴𝐴 𝐴𝐴0 = 0.126, 𝐴𝐴 𝐴𝐴0 = 0.105, and 𝐴𝐴 𝐴𝐴0 = 0.097, respectively.
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landslides. If the effect of antecedent rainfall on soil moisture content is not considered, it may cause very large 
prediction deviations.

Although the rainfall threshold can reflect the relationship between rainfall and the occurrence of landslides or 
debris flows to a certain extent, this method ignores the changes in the soil mechanical properties from the effect 
of moisture content and often has large errors. The instability of the slope is often controlled by the soil moisture 
content. Figure 20 shows the relationship between the weighted value of previous rainfall and the sum of rainfall 
on the same day and the soil moisture content after rainfall. With increasing rainfall, both the average soil mois-
ture content and the landslide volume show increasing trends. When the average soil moisture content is greater 
than 24.03%, there is a possibility of shallow landslides in the watershed, otherwise, there are no landslides.

5.3.  The Effect of the Root Strength on Landslides

The root system of vegetation is very complex and difficult to quantify. 
Different quantification methods may lead to different root strengthening 
values (Schmidt et  al.,  2001). The experimental measurement of the root 
strength of individual roots was used to quantify the mechanical reinforce-
ment of roots (in Section 3.2). However, in a soil column grid, the number 
and spacing of plants may cause differences in the mechanical reinforce-
ment of vegetation roots. This method may overestimate the mechanical 
reinforcement effect of vegetation roots (e.g., Schwarz et al., 2010; Sidle & 
Ochiai, 2006). However, there are no large-scale shallow landslides in the 
vegetation area of the Jiangjia gully watershed (Tian et al., 2021). Overes-
timating the mechanical strength of the root system does not have a very 
large impact on the prediction results. However, many actual cases in other 
regions show that even with the mechanical reinforcement of the root system 
of vegetation, larger-scale shallow landslides may still be triggered (e.g., 
Netto et al., 2011; Yang et al., 2020). Therefore, it is necessary to explain the 
influence of root mechanical reinforcement strength on shallow landslides. 
We multiply the experimental measurement value by a coefficient η to simu-
late different root mechanical reinforcement strengths. The effect of the root 
mechanical strength on the landslide damage volume is shown in Figure 21. 
As the mechanical strength of the root system decreases, the volume of the 
landslides gradually increases, indicating that mechanical root reinforcement 

Figure 18.  Average soil moisture content curve and rainfall intensity with 8 antecedent rainfall patterns. The inset shows the relationship between peak rainfall and 
cumulative runoff (26 June–16 July 1999) for the 8 antecedent rainfall patterns. Each point represents a rainfall pattern, with a total of 8 antecedent rainfall patterns.

Figure 19.  The red line is the relationship between the antecedent weighted 
rainfall value and the initial soil moisture content. The blue line is the 
relationship between the antecedent weighted rainfall and landslide volume.
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can effectively reduce shallow landslides. In addition, when the root strength 
reduction coefficient is small, the volume increase ratio of shallow landslides 
gradually decreases with increasing rainfall. This shows that with increas-
ing rainfall, the influence of vegetation on the volume of shallow landslides 
decreases. Therefore, in extreme weather conditions, mechanical reinforce-
ment of plant roots may be ineffective and even promotes the occurrence of 
shallow landslides (Yang et al., 2020).

The roots, animal carcasses and decaying plants usually form numerous pore 
channels, which allow the rainfall to quickly transfer to the potential slip 
plane, possibly passing through the wetting front to reach deeper potential 
sliding surfaces. This could lead to larger shallow landslides. The root tip is 
usually the first place where water reaches and pools, resulting in an increase 
in local soil moisture content and local pore water pressure, thereby reducing 
soil structural strength and increasing soil sliding force. When the unfavora-
ble factors of vegetation root diversion offset the mechanical reinforcement 
of the slope by the vegetation, the vegetation is not conducive to the stability 
of the slope.

6.  Summary and Conclusions
In this paper, the SWAT model and the D-LHT model are combined to 
develop a catchment-scale, day-scale numerical model to analyze soil slope 

instabilities induced by rainfall. The SWAT model considers hydrological processes such as vegetation evapotran-
spiration and canopy interception, which improves the accuracy of the coupled model.

Additionally, the model established in this paper does not limit the sliding surface to only the bedrock surface but 
calculates the depth of the wetting front through rainfall infiltration. Additionally, the iterative calculation method 
was used to search the most dangerous sliding surface in the soil profile. It also expands the scope of application 
of the coupling model. Some process-based insights from this study are summarized as follows:

1.	 �According to forecasted daily rainfall data, the proposed model can be used to predict the date, scale, and 
spatial distribution of shallow landslides well in advance.

2.	 �The sensitivity analysis results show that the model is highly sensitive to the soil type, soil moisture content, 
slope, and internal friction angle.

3.	 �Single-day rainfall is an important external factor affecting soil stability but is not the only decisive factor. 
When shallow landslides or debris flow events are predicted, the synergistic effects of various factors such as 

changes in soil water content, soil mechanical properties, and internal friction 
angles should be considered.

In general, the numerical model adopted in this paper can not only predict the 
date, spatial distribution and volume of landslides but also provide a refer-
ence for deducing the occurrence time, scale, and spatial distribution of most 
landslides in small basins with sparse data. It provides a possible new method 
for real-time shallow landslides instability prediction and warning systems. 
We intend to use the model for more case studies in the future and expect 
our model to be incorporated into an early warning system to analyze and 
predict multiple occurrences of landslides simultaneously and to issue alert 
messages.

Additionally, only one-dimensional vertical infiltration of water was consid-
ered in this model, and the lateral flow of groundwater was neglected. This 
approximation could improve the computational speed of the model but could 
also bias the physical understanding of shallow landslide triggering. Further 
effort is required to advance the physical understanding of shallow landslide 
triggering at the watershed scale in a fully three-dimensional, time-dependent 
context.

Figure 20.  The red line is the relationship between 𝐴𝐴 AP20 + 𝑃𝑃0 (the sum of 
antecedent weighted and same-day rainfall) and the soil moisture content. The 
blue line is the relationship between 𝐴𝐴 AP20 + 𝑃𝑃0 and the landslide volume. The 
red triangle points indicate that shallow landslides may occur in the watershed 
when the average soil moisture content is greater than 24.03%.

Figure 21.  The influence of root mechanical strength on landslides volume, 
where 𝐴𝐴 𝐴𝐴𝜂𝜂 is the landslide volume and 𝐴𝐴 𝐴𝐴1.0 is the landslide volume when the 
reduction factor η = 1.0.
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Appendix A:  The SWAT Hydrological Model
On the basis of several sub-watersheds dividing the watershed, the SWAT model performs overlay analysis 
according to land use, topography, and soil data and generates a smaller modeling unit called the Hydrological 
Response Unit (HRU) according to their unique combination relationship. Therefore, watersheds are heteroge-
neous, while HRUs are homogeneous. Each HRU is the minimum calculation unit of the SWAT model, which 
calculates the overall water balance of the HRU by calculating processes such as precipitation, interception, 
filling, runoff, evaporation, infiltration (and regression flow). To avoid reducing the calculation efficiency of 
the model due to too many HRUs, identical HRUs within the same sub-basin are merged. The hydrological 
response unit is composed of multiple quadrilateral grids. After the calculation of the hydrological process, 
the basic data on the original quadrilateral grid is interpolated to the hexagonal grid by the inverse distance 
weighting method. Then, the hexagonal grid is used to calculate the instability failure of the soil (Von Ruette 
et al., 2013). For ease of presentation, after the simulation, the hexagonal grid is interpolated to a quadrilateral 
grid in the same way.

A1.  Runoff

In this model, surface runoff is simulated by the Soil Conservation Service (SCS) model, which requires fewer 
parameters and is not limited to existing measured data. This method can accurately simulate the runoff generated 
by the underlying surface of various land use types and soil types. The formula for surface runoff is as follows:

𝑄𝑄surf =
(𝑅𝑅𝑑𝑑 − 𝐼𝐼𝑎𝑎)

2

𝑅𝑅𝑑𝑑 − 𝐼𝐼𝑎𝑎 + 𝑆𝑆
� (A1)

where 𝐴𝐴 𝐴𝐴surf is the surface runoff (mm), 𝐴𝐴 𝐴𝐴𝑑𝑑 is the rainfall (mm), 𝐴𝐴 𝐴𝐴𝑎𝑎 represents the infiltration, evapotranspiration and 

interception-induced rainfall losses (mm), 𝐴𝐴 𝐴𝐴 is the maximum possible retention (mm), and 𝐴𝐴 𝐴𝐴 = 25.4
(

1000

𝐶𝐶
− 10

)

 , 
where 𝐴𝐴 𝐴𝐴 is a parameter that reflects the pre-water condition of the soil, which is obtained by calibration, and is 
denoted by CN2 in Table 2. The condition for generating runoff is that the daily precipitation is greater than the 
initial rainfall loss.

A2.  Evapotranspiration

The calculation of evapotranspiration mainly includes plant and soil evapotranspiration. The calculation formula 
of plant evapotranspiration is as follows:

⎧

⎪

⎨

⎪

⎩

𝐸𝐸𝑡𝑡 =
LAI

3.0
∗ 𝐸𝐸′

0
0 ≤ LAI ≤ 3.0

𝐸𝐸𝑡𝑡 = 𝐸𝐸′
0

3.0 ≤ LAI
� (A2)

where 𝐴𝐴 𝐴𝐴𝑡𝑡 is the maximum plant transpiration (mm), 𝐴𝐴 𝐴𝐴′
0
 is the potential evapotranspiration (mm), and 𝐴𝐴 LAI is the 

leaf area index (mm 2/mm 2).

The calculation formula of soil moisture evapotranspiration is as follows:

𝐸𝐸soil,𝑧𝑧 = 𝐸𝐸𝑠𝑠
′′ 𝑧𝑧

𝑧𝑧 + exp(2.347 − 0.00713 ∗ 𝑧𝑧)� (A3)

where 𝐴𝐴 𝐴𝐴soi𝑙𝑙𝑙𝑙𝑙 is the soil moisture evapotranspiration (mm), 𝐴𝐴 𝐴𝐴𝑠𝑠
′′ is the potential soil evaporation (mm), and z is the 

soil depth (mm).

A3.  Soil Water

The calculation formula of the water volume lost to seepage is as follows:

𝑤𝑤seep = 0.024

(

2 ∗ 𝑆𝑆𝑆𝑆ly,excess ∗ 𝐾𝐾sat ∗ SLP

𝜑𝜑𝑑𝑑 ∗ 𝐿𝐿hill

)

� (A4)
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where 𝐴𝐴 SWly,excess is the discharge water volume in the soil-saturated layer (mm), 𝐴𝐴 𝐴𝐴sat is the saturated hydraulic 
conductivity of the soil (mm/h), 𝐴𝐴 SLP is the average slope of a HRU (mm/mm), 𝐴𝐴 𝐴𝐴𝑑𝑑 is the porosity (mm/mm), and 

𝐴𝐴 𝐴𝐴hill is the slope length (m).

A4.  Ground Water

Ground water exists in the baseflow forms and is a stable recharge source of surface runoff. The calculation 
formulae are as follows.

𝑄𝑄gw,𝑖𝑖 = 𝑄𝑄gw,𝑖𝑖−1 exp
(

−𝛼𝛼gw ∗ △𝑡𝑡
)

+𝑊𝑊𝑟𝑟𝑟𝑟𝑟

[

1 − exp
(

−𝛼𝛼gw ∗ △𝑡𝑡
)]

� (A5)

𝑊𝑊𝑟𝑟𝑟𝑟𝑟 =

[

1 − exp

[

−
1

𝛿𝛿gw

]]

∗ 𝑤𝑤seep + exp

(

−
1

𝛿𝛿gw

)

∗ 𝑊𝑊𝑟𝑟𝑟𝑟𝑟−1� (A6)

Where 𝐴𝐴 𝐴𝐴gw is the dissipation factor of ground water, 𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟𝑟 is the water input into the groundwater reservoir in step 
i (mm), 𝐴𝐴 𝐴𝐴gw,𝑖𝑖 is the groundwater flowing into the river channel in step i (mm), and 𝐴𝐴 𝐴𝐴gw is the lag time for water 
input into the groundwater reservoir (h).

Appendix B:  Determining the Direction of the Soil Column Instability
We number the six surrounding soil pillars No. 0 to No. 5 𝐴𝐴 (𝑘𝑘 = 0, 1, 2, 3, 4, 5) and establish the positional rela-
tionship between the soil pillars. The barycentric coordinates of the central soil column i, j is expressed as 

𝐴𝐴 (𝑥𝑥𝑖𝑖𝑖𝑖𝑖 , 𝑦𝑦𝑖𝑖𝑖𝑖𝑖 , 𝑧𝑧𝑖𝑖𝑖𝑖𝑖) . The horizontal distance between centers of hexagonal cells is 𝐴𝐴 𝐴𝐴𝑔𝑔 . The barycentric coordinates of 
the adjacent soil columns are expressed as:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑥𝑥𝑘𝑘 =

√

3

3
𝐿𝐿𝑔𝑔 cos

(

𝑘𝑘

3
𝜋𝜋

)

+ 𝑥𝑥𝑖𝑖𝑖𝑖𝑖 ,

𝑦𝑦𝑘𝑘 =

√

3

3
𝐿𝐿𝑔𝑔 cos

(

𝑘𝑘

3
𝜋𝜋

)

+ 𝑦𝑦𝑖𝑖𝑖𝑖𝑖 ,

𝑧𝑧0 = 𝑧𝑧6 = 𝑧𝑧𝑖𝑖𝑖𝑖𝑖+1, 𝑧𝑧1 = 𝑧𝑧𝑖𝑖−1,𝑗𝑗 , 𝑧𝑧2 = 𝑧𝑧𝑖𝑖−1,𝑗𝑗−1,

𝑧𝑧3 = 𝑧𝑧𝑖𝑖𝑖𝑖𝑖−1, 𝑧𝑧4 = 𝑧𝑧𝑖𝑖+1,𝑗𝑗−1, 𝑧𝑧5 = 𝑧𝑧𝑖𝑖+1,𝑗𝑗

� (B1)

The vector coordinates from the center of gravity of adjacent soil columns to the center of gravity of the central 
soil column (𝐴𝐴 𝐴𝐴′

𝑘𝑘
, 𝑦𝑦′

𝑘𝑘
, 𝑧𝑧′

𝑘𝑘
 ) are expressed as:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑥𝑥′
𝑘𝑘
=

√

3

3
𝐿𝐿𝑔𝑔 cos
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𝑘𝑘

3
𝜋𝜋

)

𝑦𝑦′
𝑘𝑘
=

√

3

3
𝐿𝐿𝑔𝑔 cos

(

𝑘𝑘

3
𝜋𝜋

)

𝑧𝑧′
𝑘𝑘
= 𝑧𝑧𝑘𝑘 − 𝑧𝑧𝑖𝑖𝑖𝑖𝑖

� (B2)

The sum vector coordinates of adjacent soil columns 𝐴𝐴

(

𝑥𝑥′
𝑘𝑘𝑘𝑘𝑘+1

, 𝑦𝑦′
𝑘𝑘𝑘𝑘𝑘+1

, 𝑧𝑧′
𝑘𝑘𝑘𝑘𝑘+1

)

 are expressed as:
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⎪

⎪

⎩

𝑥𝑥′
𝑘𝑘𝑘𝑘𝑘+1

=

√

3

3
𝐿𝐿𝑔𝑔 cos

(

𝑘𝑘

3
𝜋𝜋

)

+

√
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3
𝐿𝐿𝑔𝑔 cos

(
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3
𝜋𝜋
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𝑦𝑦′
𝑘𝑘𝑘𝑘𝑘+1

=

√

3

3
𝐿𝐿𝑔𝑔 cos

(

𝑘𝑘

3
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+

√

3
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𝐿𝐿𝑔𝑔 cos

(

𝑘𝑘

3
𝜋𝜋

)

𝑧𝑧′
𝑘𝑘𝑘𝑘𝑘+1

= 𝑧𝑧𝑘𝑘 + 𝑧𝑧𝑘𝑘+1

� (B3)

The projection vector of the center of gravity vector in the xy plane is 𝐴𝐴 𝐴𝐴𝑘𝑘𝑘𝑘𝑘+1 (𝑘𝑘 = 0, 1, 2, 3, 4, 5) . The projection 
vector of the movement direction vector of the central soil column on the two-dimensional plane is (𝐴𝐴 𝐴𝐴′′

𝑖𝑖𝑖𝑖𝑖
, 𝑦𝑦′′

𝑖𝑖𝑖𝑖𝑖
 ).

According to the principle of least action, the sum vector with the lowest center of gravity 

𝐴𝐴 min
(

𝑧𝑧′
𝑘𝑘𝑘𝑘𝑘+1

)

(𝑘𝑘 = 0, 1, 2, 3, 4, 5) is taken as the direction vector of soil column movement. The projection vector of 
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the movement direction of the central soil column on the two-dimensional plane is expressed as (𝐴𝐴 𝐴𝐴′′
𝑖𝑖𝑖𝑖𝑖
, 𝑦𝑦′′

𝑖𝑖𝑖𝑖𝑖
 ), where 

𝐴𝐴 𝐴𝐴′′
𝑖𝑖𝑖𝑖𝑖
= 𝑥𝑥′

𝑘𝑘𝑘𝑘𝑘+1
 and 𝐴𝐴 𝐴𝐴′′

𝑖𝑖𝑖𝑖𝑖
= 𝑦𝑦′

𝑘𝑘𝑘𝑘𝑘+1
 . The projection vector of the movement direction of the surrounding soil column on 

the two-dimensional plane is expressed as (𝐴𝐴 𝐴𝐴′′
𝑘𝑘
, 𝑦𝑦′′

𝑘𝑘
 ).

The formula for calculating the angle between adjacent soil columns is as follows:

𝜃𝜃𝑘𝑘 = arccos
𝑥𝑥′′
𝑖𝑖𝑖𝑖𝑖
∗ 𝑥𝑥′′

𝑘𝑘
+ 𝑦𝑦′′

𝑖𝑖𝑖𝑖𝑖
∗ 𝑦𝑦′′

𝑘𝑘

√

𝑥𝑥′′
𝑖𝑖𝑖𝑖𝑖

2
+ 𝑦𝑦′′

𝑖𝑖𝑖𝑖𝑖

2

√

𝑥𝑥′′
𝑘𝑘

2
+ 𝑦𝑦′′

𝑘𝑘

2
� (B4)

When the angle between the movement direction vectors of adjacent soil columns is an acute angle, then the force 
between the soil columns is compressive; when the angle between the movement direction vectors of the adjacent 
soil columns is an obtuse angle, then the force between the soil columns is tensile.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

If 𝜃𝜃𝑘𝑘 <
𝜋𝜋

2
then 𝜏𝜏 ′

𝑇𝑇 𝑇𝑇𝑇
= −𝜏𝜏𝑇𝑇 𝑇𝑇𝑇

If 𝜃𝜃𝑘𝑘 =
𝜋𝜋

2
then 𝜏𝜏 ′

𝑇𝑇 𝑇𝑇𝑇
= 0

If 𝜃𝜃𝑘𝑘 >
𝜋𝜋

2
then 𝜏𝜏 ′

𝑇𝑇 𝑇𝑇𝑇
= 𝜏𝜏𝑇𝑇 𝑇𝑇𝑇

� (B5)

where 𝐴𝐴 𝐴𝐴𝑇𝑇 𝑇𝑇𝑇 represents the force exerted on the central soil column by a surrounding soil column that is unstable. 
𝐴𝐴 𝐴𝐴 ′

𝑇𝑇 𝑇𝑇𝑇
 represents a force exerted on the central soil column by the surrounding soil column and is used to calculate 

the sliding force.

Notation
𝐴𝐴 𝐴𝐴gw 	 the dissipation factor of groundwater.
𝐴𝐴 𝐴𝐴𝐻𝐻 	 the area of a soil column with a hexagonal cross-section, 𝐴𝐴 m

2 .
𝐴𝐴 𝐴𝐴𝑖𝑖 	 the intersection area between two adjacent columns, 𝐴𝐴 m

2 .
𝐴𝐴 𝐴𝐴RAR 	 the ratio of the root area and the area with rooted soil.
𝐴𝐴 𝐴𝐴soil 	 the soil cohesion, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴gw 	 the lag time for water input the reservoir of ground water, h.
𝐴𝐴 𝐴𝐴𝑎𝑎 	 the water volume lost via evapotranspiration in step i, m.
𝐴𝐴 𝐴𝐴′

0
 	 the potential evapotranspiration, m.

𝐴𝐴 𝐴𝐴𝑠𝑠
′′ 	 the potential soil evaporation, m.

𝐴𝐴 𝐴𝐴soil,𝑧𝑧 	 the soil moisture evapotranspiration, m.
𝐴𝐴 𝐴𝐴𝑡𝑡 	 the maximum plant transpiration, m.
𝐴𝐴 FOS 	 the factor of safety.

g	 the acceleration due to gravity, 𝐴𝐴 ms−2 .
𝐴𝐴 𝐴 	 the capillary pressure head, m.
𝐴𝐴 𝐴𝑏𝑏 	 the air-entry value, m.
𝐴𝐴 𝐴𝑠𝑠 	 the height of the free water table in the soil column, m.
𝐴𝐴 𝐴𝐴𝑑𝑑 	 the distance from the sliding interface to the ground surface, m.
𝐴𝐴 𝐴𝐴pond 	 the depth of runoff, m.
𝐴𝐴 𝐴𝐴  	 the total infiltration of water, m.
𝐴𝐴 𝐴𝐴𝑎𝑎 	 the infiltration evapotranspiration and interception-induced rainfall losses, m.

K	 a dimensionless correction parameter.
𝐴𝐴 𝐴𝐴sat 	 the saturated hydraulic conductivity of the soil, 𝐴𝐴 mh−1 .
𝐴𝐴 𝐴𝐴 	 the pore size distribution parameter.
𝐴𝐴 LAI 	 the leaf area index
𝐴𝐴 𝐴𝐴hill 	 the slope length, m.

Lg	 Lg, m.
M	 the total mass of a soil column, kg.

𝐴𝐴 𝐴𝐴𝐼𝐼 	 the compressive load acting on the column.
NSE	 the Nash-Sutcliffe efficiency coefficient.
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𝐴𝐴 𝐴𝐴 	 the porosity.
𝐴𝐴 𝐴𝐴𝑑𝑑 	 the porosity.
𝐴𝐴 𝐴𝐴gw 	 the total underground water in step i, m.
𝐴𝐴 𝐴𝐴gw,𝑖𝑖 	 the groundwater of flowing into the river channel in step i, m.
𝐴𝐴 𝐴𝐴surf 	 the total surface runoff in step i, m.
𝐴𝐴 𝐴𝐴 	 the total precipitation in step i, m.
𝐴𝐴 𝐴𝐴𝑑𝑑 	 the rainfall, m.
𝐴𝐴 sw𝑡𝑡 	 the end water content of a time step in the SWAT model.
𝐴𝐴 sw0 	 the soil moisture content at the previous time step in the SWAT model.
𝐴𝐴 𝐴𝐴 	 the maximum possible retention, m.
𝐴𝐴 SWly,excess 	 the discharge water volume in the soil-saturated layer, m.
𝐴𝐴 SLP 	 the average slope.
𝐴𝐴 𝐴𝐴𝑓𝑓 	 the slope, °.
𝐴𝐴 Θ 	 the effective water saturation.
𝐴𝐴 𝐴𝐴 	 the volumetric water content.
𝐴𝐴 𝐴𝐴𝑟𝑟 	 the residual water contents.
𝐴𝐴 𝐴𝐴𝑠𝑠 	 the maximum volumetric water content.
𝐴𝐴 𝐴𝐴𝑖𝑖 	 the soil initial moisture content.
𝐴𝐴 𝐴𝐴𝑛𝑛 	 the soil column normal stress, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴ℎ 	 the shear strength, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴𝑅𝑅 	 the residual soil strength after failure at the sliding surface, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴rf 	 the shear stress of slope runoff, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴rs,𝑧𝑧 	 the shear strength (as a function of depth) provided by roots, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴𝑠𝑠 	 the shear stress, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴𝑇𝑇  	 the stress from the upslope columns or downslope columns when the soil column is unsta-

ble, 𝐴𝐴 kg∕
(

ms2
)

 .
𝐴𝐴 𝐴𝐴𝑅𝑅 	 the experimentally measured root tensile strength, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴seep 	 the water volume lost via seepage in step i, m.
𝐴𝐴 𝐴𝐴  	 the downslope force component of the soil column on the slip interface, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴𝑑𝑑 	 the total sliding force of the soil column on the slip surface, 𝐴𝐴 kg∕

(

ms2
)

 .
𝐴𝐴 𝐴𝐴𝑟𝑟𝑟𝑟𝑟 	 the water of input the reservoir of ground water in step i, m.
𝐴𝐴 𝐴𝐴𝑤𝑤 	 the bulk densities of the water and soil minerals, 𝐴𝐴 kgm−3 .
𝐴𝐴 𝐴𝐴𝑟𝑟 	 the bulk densities of the soil minerals, 𝐴𝐴 kgm−3 .

z	 the soil depth, m.
𝐴𝐴 𝐴𝐴𝑑𝑑 	 the depth of the wetting front, m.
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