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Abstract Predicting the occurrence time, volume, distribution and run-out length of shallow landslides

is critical for assessing the volume of debris flow in a catchment. Recent studies suggest that the landslides
hydro-mechanical triggering (LHT) model based on threshold-based mechanical interactions can adequately
predict rainfall-induced landslides. However, this model assumes that the soil-rock interface is the only
sliding surface and cannot dynamically determine a sliding surface above the soil-rock interface. Therefore,
by calculating the wetting front depth in the shallow soil layer and using the limit analysis method, the most
likely sliding surface can be dynamically calculated to improve the model. Through linking the Soil and
Water Assessment Tool (SWAT, USDA) model and the depth-resolved LHT model (D-LHT), a framework for
predicting shallow landslides in a catchment was proposed in this work. This framework considers the effects
of antecedent rainfall, the mechanical reinforcement of roots, and the spatial distribution of soil properties

on slopes. The D-LHT model was applied to the Jiangjia gully in Yunnan, China, to adequately predicted

the occurrence time, scale and spatial distribution of shallow landslides. In addition, the present and antecedent
rainfall effects on the shallow landslide volume were analyzed. The results showed that the average soil
moisture content threshold was determined by antecedent and same-day rainfall, which affect the timing and
volume of the shallow landslides. This study provides a new method for predicting shallow landslides. The
stability and simplicity of the model make it suitable for early warning systems.

1. Introduction

Debris flows are one of the most common geological disasters in mountainous areas (Iverson, 1997). The mate-
rials and water sources of debris flows mainly come from loose materials formed by shallow landslides or river
sediment and runoff formed by rainfall. In recent decades, shallow landslides and debris flows have occurred
frequently and may be associated with the persistently expanding climatic change in many areas of the world
(Bagwari et al., 2021). In China, for instance, during the 10 years from 2010 to 2019, an average of approxi-
mately 830 catastrophic debris flow events was reported each year. These disasters seriously affect the safety of
the lives and property of people in mountainous areas. Due to the catastrophic damage caused by debris flows, it
is beneficial to predict the potential of debris flow occurrence in advance. However, one characteristic of debris
flows is the abrupt way they occur, with limited precursory signals (Swanson & Swanston, 1976). The operational
prediction of such events remains a very large challenge.

The debris material formed by shallow landslides is one of the main sources of debris flows. Predicting the
volume, occurrence time and location of shallow landslides is very important for the analysis of debris flow
disasters and has an important influence on the scale of debris flow formation and the severity of the disaster.
Previous studies have proposed a variety of empirical or theoretical approaches for predicting shallow landslides
and slope instability (e.g., Arnone et al., 2011; Bout et al., 2018; Guo et al., 2020; Shen et al., 2018; Subramanian
et al., 2020) and applied them to different shallow landslides or debris flow scenarios. These approaches can be
classified into two major categories: statistically based models and physically based models (Bout et al., 2018).
The statistically based models consider the relationship between the geomorphological, topographically depend-
ent hydrological parameters (e.g., slope, curvature, rainfall intensity, and vegetation cover) and the likelihood
of debris flow occurrence (e.g., Caine, 1980; Crosta, 1998; Guzzetti et al., 2007, 2008; Larsen & Simon, 1993;
Terlien, 1998). The statistically based models have the advantages of simple data acquisition, long-term predic-
tion and good large-scale applicability. However, as indicated by recent studies (e.g., Segoni et al., 2018; Zhang
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et al., 2019), they are still limited in terms of case-specific feature descriptions and cannot be applied to address
nuanced questions (e.g., root mechanical reinforcement and slope instability caused by changes in matrix suction
and pore water pressure) and the dynamics of the shallow landslide triggering process.

The physically based models attempt to link the hydrological process and infinite slope stability analysis, and the
factor of safety (FOS, i.e., the ratio between resisting and driving forces) is commonly adopted as an indicator to
express the mechanical state of the source soil material and debris flow susceptibility. Therefore, many models (e.g.,
Arnone et al., 2011; Borga et al., 2002; Burton & Bathurst, 1998; Casadei et al., 2003; Dietrich & Montgomery, 1998;
Malet et al., 2005; Moonhyun et al., 2019; Pack et al., 1998; Subramanian et al., 2020; Wu & Sidle, 1995) that
combine steady-state shallow underground flow with infinite slope stability analysis have been developed to evalu-
ate the effects of soil moisture dynamics on the occurrence times, rates, volumes and locations of shallow landslide.
Iverson (2000) developed a model that couples transient infiltration with infinite slope stability considering the
effects of pore pressure on hill-slope stability and applied the Transient Rainfall Infiltration and Grid-Based Regional
Slope-Stability Model (TRIGRS) (e.g., Baum et al., 2002; Godt et al., 2008; Morrissey et al., 2008). To account for
the different dynamics of surface and subsurface flow, more rigorous models, such as the coupled models combining
two or three-dimensional Richards equation solvers and infinite slope stability analysis, have been developed (e.g.,
Camporese et al., 2010; Rigon et al., 2006; Simének et al., 2016), which often require more computational power.
However, the traditional FOS-based model can still be considerably improved; for example, it still cannot reproduce
the destruction process of landslides and the force interaction between soil columns (Subramanian et al., 2020).

Lehmann and Or (2012) embedded mechanical thresholds resembling concepts of self-organized criticality (SOC)
into a hydro-mechanical framework, which simulated a landslide caused by rainfall on a hillslope composed of
many interacting soil pillars, and successfully realized the progressive failure process of hillside soil pillars. As
described in the SOC framework (Bak et al., 1988), a critical state can be reached through the interaction of load
or mass redistribution among many elements and is often used to simulate various sudden large-scale release
phenomena, such as large-scale glacier disintegration and landslides (e.g., Faillettaz et al., 2011; Hergarten &
Neugebauer, 2000; Piegari et al., 2006). In their study, after soil base failure, failure of mechanical bonds inter-
connecting soil columns may cascade and trigger an abrupt release of landslides. Due to the computational
burden of modeling for large systems, the model of Lehmann and Or (2012) is limited to small slopes. Then,
Von Ruette et al. (2013, 2014) extended a simplified version of the landslide hydro-mechanical triggering model
of Lehmann and Or (2012) to larger scales encompassing an entire catchment. Fan et al. (2015, 2020) further
improved the LHT model by constructing a physics-based load redistribution rule and combining it with the
model of Perla et al. (1980) to build a general landslide-debris flow assessment model (Fan, Lehmann, Mcardell,
& Or, 2017) and analyzed the effects of the temporal patterns of rainfall intensity and antecedent soil mechanical
damage on shallow landslide triggering.

However, the above models based on LHT are established for shallow landslides, assuming that the damage
surface of the soil is on the bedrock. Obviously, this limits the scope of application of the LHT model. There are
many cases, such as the debris flow in the Jiangjia gully watershed (Hu et al., 2011), showing that the failure
surface of the slope soil is not located at the position of the bedrock. The soil layer of the Jiangjia gully watershed
is relatively thick, and there has never been a recorded shallow landslide with a slip surface at the bedrock inter-
face. Field surveys and long-term monitoring results show that the soil instability in the Jiangjia gully watershed
is mainly manifested in the weathering and spalling of loose materials on the ground caused by rainfall and that
the sliding surface is not at the rock-soil interface (Hu et al., 2011; Wang et al., 2009). The LHT model applies
well to shallow landslides where the slip surface is at the bedrock interface (Fan et al., 2016; Fan, Lehmann, &
Or, 2017). However, this model cannot be directly applied to slope soil instability like that of the Jiangjia gully
watershed type. Therefore, it is necessary to further develop this type of model. At present, some search methods
or algorithms of the landslide sliding surface have been developed (Chen et al., 2019). Based on infinite slope
stability model, Formetta et al. (2016) calculated landslide depth by examining each potential slip surface. Lu
et al. (2012) and Chen et al. (2020) proposed a local FOS method to determine sliding surface, which does not
assume any shape for the sliding surface. Recently, Bellugi, Milledge, Dietrich, McKean, et al. (2015), Bellugi,
Milledge, Dietrich, Perron, et al. (2015) and Bellugi et al. (2021) proposed a new approach that combines multi-
dimensional slope stability model with a deterministic graph-theoretic landslide search algorithm.

In this paper, based on the LHT model, the limit analysis method was employed to search for the sliding surface of
a single soil column, and a depth-resolved model that can dynamically determine a sliding surface was proposed.
Then, the D-LHT model was combined with the SWAT model to establish a new model to predict shallow
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landslides for both long-term and large-scale watershed landslide prediction. This paper is organized as follows.
First, in Section 2, the coupling model strategy is briefly introduced, including the hydrological model and slope
failure model, and detailed explanations of the implemented equations are provided. A classic SWAT model was
employed (e.g., Maharjan et al., 2013; Mehan et al., 2017) to simulate the slope water collection and seepage
process caused by rainfall, which considers the detailed regulation of vegetation on the hydrological process and
provides time-series data of the runoff and seepage flow of the slope for the subsequent stability model. Second,
in Section 3, the acquisition and source of model parameter information are introduced, and the sensitivity of
the parameters is analyzed, which improves the simulation accuracy of the model. Then, in Section 4, the model
is verified with the monitoring data of debris flows that broke out in 2009 in the Jiangjia gully. In addition, the
limitations of the model and the future improvements are discussed. Finally, in Section 5, the effects of antecedent
rainfall and root strength on shallow landslides are discussed.

2. Numerical Modeling Strategy

In this study, a hydrological model was combined with a physical slope model to simulate the instability of
rainfall-induced slope movements. The movement of the hydrological slope was modeled through the hydrolog-
ical module in the open-source program SWAT model, considering the hydrological processes such as rainfall
infiltration, runoff from slopes, vegetation interception, and evapotranspiration in detail. First, the SWAT model
was used to calculate the spatial distribution of the soil moisture content and runoff depth at different times in
the study area. Then, the calculated soil moisture content and runoff depth were imported into the slope stability
model to predict the spatiotemporal stability of shallow landslides.

The physical slope stability model proposed in this paper refers to the concept of the LHT model (e.g., Lehmann &
Or, 2012; von Ruette et al., 2013), which uses the concept of SOC to describe material failure. The D-LHT model
retains the load redistribution, root reinforcement, soil column failure threshold features of the LHT model, and is
modified as follows: (a) The slip surface is not limited to the soil-bedrock interface, and it is assumed that there
are multiple potential sliding surfaces in the depth direction (including the soil-bedrock interface). The depth of
the wetting front in the soil layer is calculated, and iterative calculation is used to find the most unfavorable sliding
surface. (b) The SWAT model is used to simulate the hydrological process of the slope, which considers hydrological
effects such as vegetation evapotranspiration, canopy interception, and transpiration. (c) The model considers that
vegetation enhances the shear and tensile strength of the soil to different degrees at different depths. The integrated
model simulates the rainfall-triggered source soil material instability of debris flows, accounting for the spatial and
temporal hydrological dynamics that influence slope failure. A flow chart of the model is shown in Figure 1.

2.1. Hydrological Process

SWAT (USDA) is an open source, semi-distributed, semi-physical watershed model that has been widely used in
continuous time series hydrological process simulation. The SWAT model divides a research basin into several
sub-basins, and includes meteorological information, hydrological response units (HRUs, the smallest hydrologi-
cal calculation unit in the model, combining a unique land use type, soil type and slope type), groundwater, river
courses, and so on (Arnold et al., 2012). First, the various types of discharges are calculated on the hydrological
response unit scale. Then the discharges are summarized at the sub-basin level and finally flow through the river
channel to the water outlet of the basin. The entire water circulation system follows the water balance law, and
the equation is expressed as:

SW; = SWo + 2;1 (R - qurf - Ea — Wseep — ng) (1)

where sw;, denotes the end water content of a time step (mm), swy is the soil moisture content at the previous inte-
gration time step (mm), ¢ represent the time step, R is the total precipitation in step i (mm), Qg r denotes the total
surface runoff in step i (mm), E, and wy.p represent the water volume lost via evapotranspiration and seepage in
step i (mm), and Qy, is the total underground water in step i (mm). More details of the hydrological model are
described in Appendix A.

2.2. Slope Soil Material Stability Modeling

This slope stability model divides the slope soil material of the watershed into an assembly of regular
hexagonal-shaped soil columns interconnected by mechanical bonds (like the spring-block models) (Lehmann &
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Figure 1. Numerical model strategy and flowchart. First, the basic parameters (such as the rainfall intensity, DEM elevation
and soil parameters), were input Soil and Water Assessment Tool model to calculate soil moisture content and surface runoff
during each time step. Then, the soil moisture content and surface runoff are input into the D-LHT model to calculate the
failure process of the soil column.

Or, 2012), as shown in Figure 2. Each hexagonal column has the same distance from the adjacent grid and has
isotropic geometric characteristics.

In this model, the limit analysis method is used to iteratively calculate the most unfavorable sliding surface of
the soil column (in Section 2.2.4) and consider the influence of hydrology and vegetation on soil mechanical
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Figure 2. (a) The slope is discretized into hexagonal soil pillars, and each soil pillar is layered in depth; (b) Schematic diagram of the stress action between soil pillars.
Along the failure direction of the soil columns (red), the uphill soil columns (orange) and the soil columns on both sides are subjected to tensile stress provided by the
roots, while the downhill soil columns (blue) are subjected to compressive stress. (¢) Conceptual illustration of the stress on a single soil column. The model can be
divided into three horizontal layers according to the saturation state of the soil, and the following situations may arise: (i) All three layers are unsaturated. (ii) All three
layers are saturated. (iii) The upper and middle layers are unsaturated, and the lower layer is saturated. (iv) The upper layer is saturated, and the middle and lower layers
are unsaturated. (v) The upper and lower layers are saturated, and the middle layer is unsaturated in panel (c).

behavior. In the event of rainfall, seepage water gradually changes the weight and strength of the soil column,
thereby affecting the change in the sliding surface of the soil column. On different sliding surfaces, the shear
strength of vegetation to soil is different.

2.2.1. Depth of the Wetting Front

The wetting front is the interface between the wet soil layer and the dry soil layer formed by the upper soil body
becoming wet due to rainfall infiltration. The wetting front divides the soil into an upper humid area and a lower
non-humid area. The humid area may reduce the suction of the soil matrix, thereby reducing the shear strength of the
soil. The formula proposed by Mein-Larson is used to calculate the depth of the wetting front. The model assumes
that the initial soil moisture content and the soil moisture content in moist areas during rainfall infiltration are evenly
distributed and the wet part is saturated (Mein & Larson, 1973). This assumption may increase the probability of
landslides, leading to an increase in the landslide volume, so the simulation results are conservative (L. Chen &
Young, 2006). The model is simple and proven to be effective. The formula of the wetting front is as follows:

1

Zy= ————
(@5 — ;)cos a

(2)
where Z, is the depth of the wetting front (mm), I is the total infiltration of water (mm), I = sw, — swy, 0, is the
maximum volumetric water content (m3/m?), and 6, is the volumetric soil water content at the previous integration
time step (m*/m?3).

2.2.2. Force Evolution of Single Soil Columns

A local FOS-like estimate is used to assess the mechanical conditions and is applied to each individual column.
The total sliding force W, of the soil column on the slip surface is defined as follows:

Wi=W —or + ¢ 3

where 77 is the stress from the upslope columns or downslope columns when the soil column is unstable (in
Section 2.2.4). The total mass M of a soil column and the downslope force component W of the soil column on
the slip interface are given as:

Mosi
w = Mssina

= Anjoosa Hyl[0y0 + (1 — y)y,Jsina cos a @

where g is acceleration due to gravity, Ay denotes the hexagonal cross-section of a soil column, H, represents the
distance from the sliding interface to the ground surface (explained in detail in Section 2.2.4), 6 is the volumetric
water content, y is the porosity, and y,, and y, are the bulk densities of the water and soil minerals, respectively.
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7,¢ 18 the shear stress of slope runoff and can be expressed as follows:
Tf = Ypronde (5)

where S, is the slope of the soil column (mm/mm) and H g is the depth of runoff (mm), which is calculated by
the SWAT model.

The shear stress 7, is a function of the soil column normal stress o, and the weakening or reinforcing effects of the
soil water and cohesion ci. According to Iverson et al. (2000) and Vanapalli et al. (1996), increasing soil water
results in an increase in pore water pressure, modifying the soil internal strength and reducing the effective stress
of the soil. That is, when rainfall infiltrates the slope soil, as the soil saturation gradually increases, the matrix
suction gradually disappears, the pore water pressure gradually increases, or the groundwater level rises, thus
reducing the shear strength of the soil. When the soil is in different saturation states (saturated and unsaturated),
different formulas need to be used to calculate the shear strength of the soil. The soil saturation state is closely
associated with rainfall, soil infiltration properties, and groundwater level etc. The schematic diagram of the soil
saturation state is shown in Figure 2c. The calculation formula of z; is as follows:

Ts = Csoil + (0 + Th)tang

Csoil F Croot + {Hsd[H Yw + (1 = w)y,]cos? @ — hyy, cos? a}tan @ ,Saturation (6)
+ Tz =

Csoil + Croot + {Hsd[g Yw + (1 =)y, Jcos® a — @hyw}tan @ , Unsaturation

where O is the effective water saturation, A is the pore size distribution parameter, 7, is the shear strength as intro-
duced by Bishop (1960), h is the capillary pressure head, A, is the height of the free water table in the soil column,
and 7, ; is the shear strength (as a function of depth) provided by roots. To incorporate the soil type information
into the hydraulic landslide model, Lehmann and Or (2012) and Fan et al. (2015) used the pore size distribution
parameter A of the Brooks and Corey soil water retention model to describe the effect of soil type (soil texture
level) on soil hydraulic properties. It has been proven that the inlet value and saturated hydraulic conductivity of
the hydraulic function can be expressed as a function of the parameter A (Lehmann & Or, 2012).

Brooks and Corey (1964) used the model to parameterize the hydraulic properties:

s \*

- ©=(—=) .lhl=lh

@:(9—0’) (h> b (7a)
s =1 LAl < |hs|

h = —|hy|® /4 (7b)

where @ is the water content, A, is the air-entry value, and 6, and ; are the residual and maximum water contents,
respectively. In Section 4.2, the possible values of 4 are described in detail.

2.2.3. Tensile and Compressive Effects of Neighboring Columns

The load of a failed soil column is redistributed to neighboring columns via mechanical bonds. As shown in Figure 2,
when the central soil column slides along the sliding surface, it is blocked by the surrounding soil columns, and its
excess sliding stress is transferred to the surrounding soil columns. Along the failure direction of the soil columns, the
uphill soil columns and the soil columns on both sides are subjected to tensile stress, while the downhill soil columns
are subjected to compressive stress. When W, < o, tan @, the column remains stable under the support of cohesion
and soil strength. When o, tan ¢ < W,, the soil column distributes excess stress to the adjacent soil columns. The
formula for the load redistribution to lateral column stress after basal failure is as follows (Lehmann & Or, 2012):

_Ag
r

= Wy —o,tanp —
Aicosa( Ry @ — TR) (8)

where Ay is the area of a soil column with a hexagonal cross-section, A, is the intersection area between the two
adjacent columns failure planes, and 7 is the residual soil strength after failure at the sliding surface.

It is evident that the topography determines the failure direction of the soil column and thereby the method (tensile
or compressive) of the stress transmission of the soil column. Slope instability led to topographical changes, and
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H,

H,

Figure 3. Infinite slope model for a variably saturated infinite slope with a
weathered mantle. The red solid line is the most dangerous sliding surface and
the red dashed lines are the potential sliding surfaces.

the inclination direction of soil column destruction changes accordingly. To

simplify the stress transfer of the soil column, let us suppose that the central
Soil Slice soil column can only slide in the specified six directions (the stress transfer is

symmetrical). According to the least action principle, the central soil column

L, Dynaric ' is more inclined to apply compressive stress to the adjacent soil column with
- Field lower potential energy if it is unstable. Therefore, the method of Appendix B
/'/ Slip Surface is adopted to judge the direction of instability and failure of the soil columns.
Hy | '
d On

/

Soil Layer

7y @
Bedrock

Static Field

2.2.4. Soil Column Failure

When the lateral tensile bonds (between the uphill and lateral columns) are

all broken, the soil column must be stabilized by the downhill columns.

Potential Sliding However, when the compressive load imposed on the soil column exceeds its

Surface intrinsic compressive strength, the soil column is destroyed and released as a
landslide (becomes “fluidized”) (e.g., Hu et al., 2011; Lehmann & Or, 2012).

Bedrock The soil fails when the external loads transmitted to the soil exceeds the soil
Surface stress limit threshold, which is determined by the nature and structure of the

soil. The compressive strength is usually defined as (e.g., Goodman, 1980;
Mullins & Panayiotopoulos, 1984):

2 N; .

T _ 2concos(p) | 2sin(p) * O *x h
2 Al ’
T

- . &)
— sin(@) 1 —sin(gp)

Te

where N; and A; are the compressive load and area acting on the column,
respectively.

2.2.5. Distance From the Sliding Surface to the Ground Surface

Based on Equations 2-7, the stress on the soil column in various phases was calculated, but the depth of the
sliding surfaces H, must be known. Different from the LHT model, this model assumed that any plane parallel to
the bedrock surface may be a potential sliding surface. At the same time, the soil column may have only one most
dangerous sliding surface. At different depths, the sliding force, shear resistance, and compressive strength of the
soil are different (Lu & Godt, 2008). As the depth change, the force 71 from adjacent soil pillars changes with the
contact area between adjacent soil pillars. Therefore, the FOS on the potential sliding surface of each soil column
(in Figure 3) is calculated. The sliding surface with the smallest FOS is the most dangerous sliding surface. The
factor of safety FOS can be denoted as follows:

FOS = o — H[0yw + (1 —y)y, lsinacosa — or + 7,¢

(10
d Csoil + (0 + TH)tAN @ + Ty 2

2.2.6. Sensitivity Analysis of the Stability Model

The sensitivity analysis of parameters can help us more efficiently obtain high-confidence simulation results
when it is difficult to obtain complete parameters in the study area. Thus, a sensitivity analysis is conducted on
the parameters required by the model (Equations 2-9) to calculate the FOS, to determine the impacts of input
parameters on the value of the safety factor and to obtain the key input parameters. In the univariate sensitivity
analysis of the stability model, all initial parameters are kept constant, except for the parameters chosen for sensi-
tivity analysis (Table 1). Figure 4 shows the effect of each selected parameter change on the FOS. As illustrated
in Figure 4, the cohesion and angle of internal friction of the soil are positively correlated with the FOS calculated
by the model. While the depth of sliding surface H,, Brooks and Corey parameter of the water retention curve
A, volumetric water content @ and slope «a are inversely correlated with the FOS. The most sensitive parameters
in this model are the Brooks and Corey parameter of the water retention curve A, volumetric water content 6 and
slope a, which shows that the inherent mechanical properties of the soil and the topography play the most impor-
tant role in the stability of the slope. Therefore, the soil geotechnical parameters and digital elevation data in the
study area are critical to the accuracy of the simulation.
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Table 1
The Parameters of the Univariate Sensitivity Analysis
Parameters for sensitivity analysis Initial parameters Value range of parameters (+30%)
Distance from the sliding interface to the ground surface, H, 1m 0.6-1.4 m
Volumetric water content, 6 0.2 m*/m’ 0.12-0.28 m* /m3
Pore size distribution parameter, A 0.25 0.15-0.35
Bulk densities of the soil minerals, 7, 1,500 kg/m? 900-2,100 kg/m?
Angle of internal friction, ¢ 22° 13.2-30.8°
Soil cohesion, ¢, 3,000 Pa 1,800—4,200 Pa
Hill slope, a 35° 21-49°

3. Overview of the Model and Input Parameters

3.1. Watershed and Meteorological Characteristics

To test the performance of this model, the Jiangjia gully watershed in northeastern Yunnan Province in Southwest
China (N 26°13'-26°17’, E 103°06'-103°13"), was selected as the research case. A 10 m X 10 m resolution digital
elevation model (DEM) shows that the 48.6 km? basin exhibits large elevation changes, rising from 1,062 m to
3,209 m. Based on the data from the debris flow observation station of the Institute of Mountain Hazards and
Environment (IMHE) at the Chinese Academy of Sciences, the geological conditions in the area are very active,
and the slopes are rich in provenance. From 1965 to 2010, a total of 497 shallow landslides and debris flow events
were recorded by the debris flow observation station, with the highest frequency of 28 times a year and an average
annual frequency of more than 10; the magnitude of the volume of the flows varies from 10° to 10° cubic meters
(Guo et al., 2013). Landslides in this basin (Figure 5) mostly occur from June to September, with more than 80%
of the total annual rainfall (ranging from 700 to 1,200 mm) occurring in this time (Hu et al., 2011).

3.2. Vegetation Properties and Root Strength

The land use properties required for the modeling are from the global geo-information public product provided by
China to the United Nations with a 30-m resolution (http://www.globalland-cover.com/) (Figure 5). In the study
area, more than 80% of the area is in the zone 1,500-3,000 m above sea level, namely, mountainous subtropical
evergreen broad-leaved forest and mountain temperate coniferous broad-leaved forest mixed forest. There is little
forest in the basin, representing 12.3% of the total area of the basin, and grassland accounts for approximately
57.0% of the total area. Cultivated land accounts for approximately 30.4%, and artificial surfaces account for
approximately 0.3%.

The main tree species in the forest area in the basin are New albizia julibris-
100 ‘ ‘ : : : sin (NAJ-arbor) and Coriaria sinica (CS-shrub). The roots result in different
‘ ‘ ! ! ! shear and tensile strengths at different depths. The experimental measure-
ment data of the roots come from a report by Chen et al. (2019). According to

~
w
T

measured root tensile strength, and Arar is the ratio of the root area and the
area with rooted soil. The increment of the root shear strength in soil with
depth is shown in Figure 6. The reinforcement depths of the roots of NAJ
and CS are approximately 1.6 and 0.8 m, respectively. In addition, due to

a —>—cyy ‘Waldron-Wu, based on the Mohr—Coulomb, the root soil shear strength model

50 o is established (e.g., Pollen & Simon, 2005; Preti, 2006; Waldron, 1977; Wu
! | § i § etal,, 1979;):

25+ Trsz = 1.2 K - Tk - Arar 11

0 < where K is a dimensionless correction parameter, Tk is the experimentally

Y
[

Accuracy variation of the factor of safety (%)

-50 1 1 1 1 1 1 1 o e . . .
30 20 10 0 10 20 30 the limited mechanical reinforcement effect‘ of herbaceous plants on the .s01l
Variation of the input parameters (%) and the sparse growth of herbaceous plants in the study area, the mechanical
strengthening effect of the herbaceous plants on the soil is neglected in the
Figure 4. The influence of parameter changes on the FOS. simulation.
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Figure 5. Location of the catchment. (a) The yellow area shows the location of Yunnan Province in China, and the red region is the Dongchuan district, Kunming city.
(b) The red area is the study area, situated in Kunming city. (c) Digital elevation of the study area. (d) Land use (four types). (¢) Soil classes and (f) Thickness of soil
layer (Hengl et al., 2017).

3.3. Soil Type and Properties

According to the U.S. Department of Agriculture classification system, the soil type and soil hydraulic properties
(i.e., soil water retention and hydraulic conductivity) are determined by the fractions of sand, silt and clay miner-
als. From the soil class diagram (Figure 7), shows 2 types of soil (sandy clay loam and loam) of soil in the basin.
The soil classes required for the model are from the website of the Food and Agriculture Organization of the
United Nations, with a 250-m resolution (http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/). The soil texture was mainly classified as loam and sandy clay loam
(Figure 7). This is consistent with the field sampling survey value of Hu et al. (2011).

25 350
" @ NAJ-Shear strength  y = 0.5096x2318 R2 = 0.8486
% . i ) 4 300 =
220 |t # NAJ-Tensile strength  y = 51.785x073 R? = 0.9502 g
] \ A CS-Tensile strength y = 63.744x°0¢6 R2=(0.9924 =]
= 1 250 ¢
i £
£ 15 B
2 4 200 E
g g
= -
2 g
© 1 150
10 <
% -
< g
g 4 100 £
£ 2
| 415 2
2 =
=
0 * 0
0 1.6 1.8

Soil depth / m

Figure 6. Root shear strength and tensile strength at different depths.
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Figure 7. Soil texture diagram. There are five soil combinations of the ratio of clay, sand and silt in Jiangjia gully, as shown
in Figure Se. According to the U.S. Department of Agriculture classification system, there are two soil types: sandy clay loam

and loam.

Abundant evidence shows that cohesion and internal friction angle change with the variation in water content
(e.g., Matsushi & Matsukura, 2006; Mouazen et al., 2002). To improve the accuracy of the model, the influence
of the water content on the cohesion and internal friction angle is considered. The relationships between cohe-

sion and internal friction angle and water content are shown in Figure 8. The data come from the report of Hu
et al. (2011). Figure 8 shows that the cohesion and internal friction angle in the Jiangjia gully exhibit a good

correlation.

A}
y =-3.8379x + 69.115 .
R?=0.9889 \

Cohension /kPa

A c (Experiment) \

- = c (Fit for experiment) \

5.00 10.00 15.00 20.00 25.00 30.00 35.00 40.00
Soil moisture/%

Figure 8. The relationships between the cohesive force c,,; and internal
friction angle ¢ and water content (Hu et al., 2011).

4. Numerical Modeling Results and Analysis

The cohesion ¢y, (including the root strength), the internal friction angle
@, the soil bulk density y,, the maximum water content §; = 0.33 and the
residual water content 8, = 0.03 on which this article is based are availa-
ble in Hu et al. (2011) and Chen et al. (2019). And the air-entry value h, =
0.902 m is taken from the results of the experimental measurements by the
IMHE. However, the soil moisture content 6 and soil type parameter A usually
need to be calibrated. Therefore, in this chapter, the hydrological process is
calibrated. Then, the best fit result of the soil type parameter A is simulated.
Finally, the performance of the model is evaluated.

4.1. Hydrological Model Calibration

It is necessary to note that proper model calibration is very important to
reduce the error of the model output (e.g., Chen et al., 2020; Maharjan
et al., 2013). The amount of observed runoff was used to calibrate the hydro-
logical process. In this study, the free program swap-cup provided by the
SWAT model official website was used to calibrate the hydrological runoff.
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Figure 9. SWAT model runoff calibration results, correlation coefficient: NSE = 0.66, R?> = 0.82 (when NSE >0.5 and R? >0.6, the simulation results are usually
perceived to be credible). Inset shows the comparison between simulated and measured soil moisture content for 22 June to 25 August 2006.

The calibrated model parameters are shown in Table 1, and the calibration results are shown in Figure 9. A
comparison of the results shows that the calibration results exhibit satisfactory agreement with the observed
results. The Nash-Sutcliffe Efficiency coefficient (NSE) is 0.66, and the Pearson Correlation coefficient (R?) is
0.86. Through the calibration of the hydrological process, the correctness of the soil moisture content is guaran-
teed to a certain extent. In addition, the calibrated parameters were used to invert the soil moisture content in the
basin in 2006, as shown in the inset of Figure 9. This figure compares the simulated and observed soil moisture
contents from 23 June to 25 August 2006. The results showed that the simulated and monitored soil moisture were
basically consistent (Zhuang et al., 2015). In conclusion, the results of this simulation are reasonable.

Figure 9 also shows the changes in soil moisture content in 2009 as a numerical estimate. The average soil mois-
ture reached a maximum of 29.5% on August 4. The only shallow landslides event recorded in 2009 also occurred
on this day. In addition, there was almost no rain in the study area before June. The average moisture content of
the soil was kept below 15.0% for a long time and was only approximately 4.3% at the lowest. However, the rain-
fall reached 51.2 mm/day (rainstorm level) on June 26, which was roughly equivalent to the rainfall on August 4
(57.7 mm/day). Although the soil water content increased sharply after heavy rain, reaching 2 times that before
rain, the soil water content was still low due to long-term drought and the long-term lack of water in the soil.
Therefore, under heavy rainfall, there were still no shallow landslides or debris flows in the study area. This also
shows that it is difficult to accurately predict shallow landslides or debris flow events based on single-day rainfall
and ignoring the influence of soil moisture content on soil mechanical properties (Table 2).

4.2. Best Fit Scenario for Estimating Soil Type Parameters A

Using the numerical modeling approach described in Section 2 and the parameters in Section 3, rainfall-induced
shallow landslides were simulated. The duration of the simulation is set to 123 days, from 1 June 2009, to 1
October 2009. The simulation results are consistent with the observations, and shallow landslides occurred in the
Jiangjia gully only on August 4. Therefore, we focus on the analysis of the simulation results on August 4, that is,
the volume and spatial distribution of landslides.

Loam and sandy clay loam are the two main types of soils in the study area (in Section 3.3). Loam accounts for
approximately 58.9% of the total area, and sandy clay loam accounts for approximately 41.1%. To fit the best soil
type parameter A in the study area, it is assumed that the parameter 4 is constrained by the values of A, = 0.137
to 0.355 for loam and Ascp, = 0.125 to 0.502 for sandy clay loam according to Rawls et al. (1982). The 4 value
of different permutations and combinations were simulated. The simulation scheme is shown in Table 3. The
simulated and actual landslide areas within each sub-watershed were compared. The correlation coefficients
between simulated and actual landslides under different soil types are calculated, as shown in Figure 10. When
the soil type parameters are A, = 0.325 and Asc. = 0.3, the simulation result are the closest to the inventory data,
NSE = 0.8 and R? = 0.93. Obviously, the soil type has a great influence on the landslide volume, which was also
reported in previous studies (Von Ruette et al., 2013). When the loam soil type parameter A, <0.25, NSE <0, the
simulation error is large.
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Table 2

Calibrated Model Parameters and Value Ranges

Category

Parameter

Description

Min

Max.

Calibrated value

Runoff

Groundwater

Soil/Plant

Reach

CN2/C
OV-N
CANMX
SURLAG
ALPHA_BF
GWQMN
REVAPMN
GW_DELAY
GW_REVAP
SOL_AWC()
SOL_K()/ K
EPCO

ESCO/ E,”
CH_K2
CH_N2

SCS runoff curve number (%)

Manning's “‘n” value for land cover to estimate overland flow (%)
Maximum canopy storage (mm)

Surface runoff lag time (hr)

Baseflow alpha factor (shallow aquifer)

Threshold depth of water in the shallow aquifer required for return flow to occur (mm)

Minimum depth of water in shallow aquifer for re-evaporation to occur
Groundwater delay (days)

Groundwater ‘‘revap” coefficient

Available water capacity of the soil layer (mm/h)

Saturated hydraulic conductivity (mm/h)

Plant uptake compensation factor

Soil evaporation compensation factor

Effective hydraulic conductivity in main stream alluvium (mm/hr)

35
0.01

—_

98
30
100
24
1.0
1000
200
450
0.2

900

500

413
15.0
30.0
12.0
0.1
450
180
72.0
0.07
0.7
108.3
0.9
0.7
150.0

Manning's “n”” value for the main stream

1o 6690

o'ooooo’sooooo

0.3 0.09

Table 3

Parameter A Setting Scheme of the Soil Spatial Variability

4.3. Comparison of the Shallow Landslides List of Observed and Simulated

To verify the predictive performance of this model at the landslide scale, the density-based spatial clustering and
other algorithms were employed to cluster adjacent damaged soil columns together to generate landslide poly-
gons, which enables one to eliminate outliers from the data set. The area and volume of the shallow landslides
were calculated after clustering, and these results were compared with the observed shallow landslides (the data
are from the Jiangjia gully debris flow observation station, including the elevation difference of the DEM before
and after the landslide), as shown in Figure 11. Figure 12 shows the cumulative distribution function (CDF) of
the simulated single landslide area and the measured landslide scar area from inventory data. The results show
that the simulated soil depths are in good agreement with measured landslide thickness. In addition, the entire
watershed was classified into 16 sub-watersheds depending on watershed topography, and the depth, area, and
volume of the shallow landslide soil column in each sub-basin were calculated (Figures 13 and 14). The results
(in Figure 13) show that both the landslide inventory and simulation reproduce the power law relationship.

A comparison of the simulated landslide depth with the observed landslide depth of each sub-watershed is shown
in Figure 13. The results show that the simulated landslide soil depth is 0.72—1.77 m, whereas the observed land-
slide soil depth is 0.55-1.65 m. The average simulated and observed landslide soil depths are 0.764 and 0.729,
respectively. The simulated landslide depths are slightly deeper than the actual landslide depths, which could be
related to the overestimation of the wetting front depth. In this model, only the one-dimensional vertical infiltra-
tion considered, not the lateral flow of groundwater. The benefit of this is simplification is a reduction in compu-
tational costs, the downside being that the depth of the wet front may be overestimated, resulting in a deeper
predicted landslide depth. Figure 14 shows a comparison of landslide area and volume. The area is the area of the
clustered landslides, and the volume is the product of the average depth of the failed soil column and the area of
the clustered landslides. The results show that the simulation is satisfactory. The correlation coefficients of the
simulated and actual landslide volumes and areas are NSE = 0.81 and 0.80 and R? = 0.94 and 0.93, respectively.

4.4. Validation of the Numerical Results

To further evaluate the performance of the model, the shallow landslide was

Soil type

T —— simulated with rainfall during the two-year period 1999-2000, using the

Loam (A;)

Sand clay loam (Ascy)

0.2, 0.225, 0.25, 0.275, 0.3, 0.325. 0.35

parameters calibrated above. According to the observation data, landslide
events occurred on a total of 16 days in 1999-2000. The simulation results

02,03,04,0.5 show that disaster events occurred on a total of 15 days in 1999-2000. The
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Figure 10. Numerical results of the landslide area correlation coefficients. The case of NSE <0 is not shown in the picture.

occurrence times of 13 debris flows are consistent with the observation data, and the accuracy of the occurrence
time of debris flow disaster prediction is 81.25%. Figure 15 shows that the simulation results misreport two land-
slide events on 23 July 1999, and 3 September 1999, and miss three landslide events on 5 August 1999, 19 June
2000, and 6 July 2000. Figure 16 shows the relationship between the observed and the predicted volumes. The
error in the volume of the shallow landslide volume predicted by the model is in the range of —40% to +50%.

Although the simulation results of the model still deviate from the observation data and may miss small-scale
debris flow events, this is unavoidable and is related to many factors (e.g., soil parameters, climate, and rainfall).
The deviation of rainfall data is an important source of forecast error. The Jiangjia gully watershed has a large area,
and there are significant differences in local rainfall in the region. In this study, the average rainfall collected by
three rainfall devices distributed at different locations in the watershed was used (in Figure 11). The error formed
using the average rainfall may be an important reason for the deviation in the simulation prediction results. In

Landslides thick
ness by observed

A

w6 ; Pa;
- 0.55 [_] Clustered landslides by modsh //
Landslides thick- —— Reach N

Elevati ; =%
ness by model(m) eV? lil?gh(‘rg)z 00 ¢ Rain gauge R

- 1.77 - i 1 Jiangjia gully basin
072 Low: 1062

* Observation station 0—:0;8—_2=im

Figure 11. Comparison of model and observed landslide depth and distribution. The black numbers are sub-basin numbers 1-16.
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Figure 12. Cumulative distribution of the simulated landslide area and the
measured landslide scar area from inventory data.

addition, according to the historical observation data, the volumes of these
3 disasters, which occurred on 5 August 1999, 19 June 2000, and 6 July
2000, were relatively small, with shallow landslide volumes of 0.8 X 10* m3,
7.24 x 10* m?, and 6.3 X 10* m?, respectively. Due to the large watershed
area of Jiangjia gully, there are still deposits left over from shallow landslides
in the channel. Not every debris flow event triggers a new shallow landslide,
especially small-scale debris flow events. This may cause the model to fail
to accurately predict this type of event. Because this is a catchment-scale
model, this model does not aim to predict the volume of shallow landslides
very accurately but aims to be consistent regarding the order of magnitude.
Therefore, the simulation results of the model are satisfactory.

Finally, we would like to emphasize that although the established numerical
model simulates shallow landslides caused by rainfall well, its limitations
and particularities must be explicitly understood (Subramanian et al., 2020).
First, to obtain better prediction results, complete and accurate soil physical
parameters and rainfall data are needed. Second, in our model, soil pillars
may still be damaged along the soil-rock interface, so soil depth is still impor-
tant. Third, the SWAT model is semi-empirical but proves to be effective for
the purpose of this study. In addition, in the process of calculating soil insta-
bility in each rainfall time step, 1 day's rainfall is considered the application
condition. The progressive instability process of the landslide in the current

2.0

state is calculated until the soil column reaches static equilibrium, and then start the next rainfall time step starts.
The purpose is to achieve long-term forecasting, over months or even a year. Therefore, the time scale of rainfall
is daily in this simulation (e.g., Godt et al., 2012; Kuriakose et al., 2010; Subramanian et al., 2020). However, the
destruction of shallow landslides usually takes a short time and may even occur within a few seconds. Therefore,
to improve the prediction efficiency and accuracy, it is also necessary to establish a prediction model with a
shorter time scale (e.g., hour-scale, minute-scale or second scale) and to couple it with this model.

5. Discussion

In this section, the sensitivity of analytical models to rainfall and root strength is discussed by establishing artifi-
cial rainfall patterns and root strengths, and the error of the model is analyzed.
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Figure 13. Comparison of the simulated and observed landslide depths; each point represents a soil column. Sub3-N and Sub3-O represent the numerical and observed
soil column failure depths in sub-watershed 3, respectively. The inset is a boxplot of the depth of the landslide soil column. The average failure depth of the simulated

and observed soil column is 0.764 and 0.729, respectively.
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Figure 14. Comparison of the simulated and observed landslide areas and volumes. The results show that the simulation
results are satisfactory, the landslide volume correlation coefficients are NSE = 0.81 and R? = 0.94; the landslide area
correlation coefficients are NSE = 0.8 and R? = 0.93.

5.1. The Effect of Same-Day Rainfall Intensity on Landslides

Three landslide events were selected randomly, 16 July 1999, 24 June 2014, and 4 August 2009, to simulate the
effect of different rainfall intensities on the same day on the landslides volume. The initial water contents of the
three landslides events are 0.126, 0.105, and 0.097, respectively. Figure 17 shows the effect of different same-day
rainfall events on landslide volume. The results showed that the landslide volume increased with the same-day
rainfall. The initial soil moisture content significantly affects the volume of the landslides. The higher the initial
soil moisture content is the larger volume of the landslide. It can be expected that under dry conditions (unsatu-
rated), the shear strength of the soil mass is higher, reducing the possibility of landslides.

100 0.35
90 L [ |Rainfall (mm/day)
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20| — Average soil moisture 0.25 §
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Figure 15. Rainfall and average soil moisture content in the 2 years of 1999-2000 (daily). The model predicted and observed shallow landslides in the watershed
occurred on the days marked by brown diamonds and magenta circles, respectively.
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r«’g 180 5.2. The Effect of Antecedent Rainfall on Landslides

= 160 1 A Shallow landslideg/in 1999-2000 7 While the rainfall infiltration effects on landslides or shallow landslides have
é 7 been studied extensively, no consensus has emerged about the antecedent
E 140 - +50% . ,’/ rainfall on shallow landslides (e.g., Aleotti, 2004; Brand, 1984, 1992; Jemec
_§ 120 1 v ’ & Komac, 2013; Ma et al., 2014; Rahardjo et al., 2007; Rahimi et al., 2011).
ES s Obviously, antecedent rainfall has an important effect on shallow landslides
E 100 |- AL ’ in the Jiangjia gully, but different antecedent rainfall values may have varying
c.g 80 - o A 0% degrees of impact (Jonathan et al., 2006). This difference may be related to
g 7 w2 the effect of antecedent rainfall changes on the soil moisture content. It has
% 60 - A L7 ’ been shown that as the initial soil moisture content before rainfall increases,
- 40 - //A matrix suction decreases, and thus the volume of landslides increases. To
f ﬁ/ A further explore the effect of antecedent rainfall on shallow landslides, first,
.§ 20 - & the average soil moisture content was simulated under different previous
§ 0 . . L . A . . . rainfall patterns (in Figure 18). Taking the landslides event on 16 July 1999,
Zz 0 20 40 60 80 100 120 140 160 180 as an example, 8 precipitation patterns were designed for a total of 20 days

Observed the volume of shallow landslides (10*m®)

Figure 16. Relationship between the observed and simulated landslide
volume from 1999 to 2000. Each point represents a landslide event, with a
total of 15 landslide events.

from 25 June 1999, to 15 July 1999, numbered No. 1 to No. 8. The total

antecedent rainfall TP,, (TP, = i P,) of these 8 rainfall patterns is 120 mm,
i=1

and the weight of the antecedent rainfall AP, gradually increases with the

numbers No. 1-No. 8. The formula of antecedent rainfall AP,, was as follows

(Woldemeskel & Sharma, 2016):

AP, =)' PK' (12)
1

P is the rainfall on the i day before the landslides event, K is the decay factors (ranging from 0.4 to 1.0, Take 0.8

in the study area), and # is the total number of days (Take 20 in this study).

Figure 18 shows the relationship between the weight of the antecedent rainfall and the initial soil moisture content
before the rainfall on 16 July 1999. This show that with increasing weighted antecedent rainfall AP, the initial soil
moisture before rainfall first increases and then decreases. Comparing the eight rainfall patterns, it can be seen that
the larger the pre-weighted rainfall value, the more concentrated the rainfall is in the first few days of the landslides.
Taking No. 8 as an example, the rainfall in the two days before the disaster accounted for 81% of the accumulated
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Figure 17. The relationship between different same-day rainfall intensities
and landslides volumes. The brown, blue, and red dashed lines are the
simulated fit lines of 16 July 1999, 24 June 2014, and 4 August 2009. The
initial soil moistures are 6, = 0.126, , = 0.105, and 6, = 0.097, respectively.

rainfall in the first 20 days, which led to a very low soil moisture content before
July 13, even though rainfall occurred on the 14th and 15th. Even with higher
intensity rainfall, the soil moisture content still did not reach a high value. The
inset of Figure 18 shows the relationship between peak rainfall and cumula-
tive runoff (26 June—16 July 1999). The results show that the higher the peak
rainfall, the higher the total cumulative runoff. The reasons is that the infiltra-
tion time is short, and the high-intensity rainfall are exceeding soil infiltration
capacity and convert more water into surface runoff, which leads to a lower
soil infiltration. A similar result was obtained in a study by Fan et al. (2020).
Therefore, with increasing weighted previous rainfall, the initial soil moisture
first increased and then decreased.

Figure 19 also shows the relationship between the pre-weighted rainfall and
the volume of the landslides. As the pre-weighted precipitation increases,
the volume of the landslides first increases and then decreases. The reason
for this is that the landslide volume increases with the initial soil moisture
content before rainfall. In summary, the pre-weighted rainfall can be used for
the quantification of different pre-rainfall models, but the landslide volume
does not increase with increasing pre-weighted rainfall but first increases to
the peak and then decreases slightly. The above results confirm that early
rainfall mainly controls the soil water content, affecting the volume of the
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Figure 18. Average soil moisture content curve and rainfall intensity with 8 antecedent rainfall patterns. The inset shows the relationship between peak rainfall and
cumulative runoff (26 June—16 July 1999) for the 8 antecedent rainfall patterns. Each point represents a rainfall pattern, with a total of 8 antecedent rainfall patterns.

landslides. If the effect of antecedent rainfall on soil moisture content is not considered, it may cause very large

prediction deviations.

Although the rainfall threshold can reflect the relationship between rainfall and the occurrence of landslides or
debris flows to a certain extent, this method ignores the changes in the soil mechanical properties from the effect

of moisture content and often has large errors. The instability of the slope is often controlled by the soil moisture

content. Figure 20 shows the relationship between the weighted value of previous rainfall and the sum of rainfall

on the same day and the soil moisture content after rainfall. With increasing rainfall, both the average soil mois-

ture content and the landslide volume show increasing trends. When the average soil moisture content is greater
than 24.03%, there is a possibility of shallow landslides in the watershed, otherwise, there are no landslides.
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Figure 19. The red line is the relationship between the antecedent weighted
rainfall value and the initial soil moisture content. The blue line is the
relationship between the antecedent weighted rainfall and landslide volume.

5.3. The Effect of the Root Strength on Landslides

The root system of vegetation is very complex and difficult to quantify.
Different quantification methods may lead to different root strengthening
values (Schmidt et al., 2001). The experimental measurement of the root
strength of individual roots was used to quantify the mechanical reinforce-
ment of roots (in Section 3.2). However, in a soil column grid, the number
and spacing of plants may cause differences in the mechanical reinforce-
ment of vegetation roots. This method may overestimate the mechanical
reinforcement effect of vegetation roots (e.g., Schwarz et al., 2010; Sidle &
Ochiai, 2006). However, there are no large-scale shallow landslides in the
vegetation area of the Jiangjia gully watershed (Tian et al., 2021). Overes-
timating the mechanical strength of the root system does not have a very
large impact on the prediction results. However, many actual cases in other
regions show that even with the mechanical reinforcement of the root system
of vegetation, larger-scale shallow landslides may still be triggered (e.g.,
Netto et al., 2011; Yang et al., 2020). Therefore, it is necessary to explain the
influence of root mechanical reinforcement strength on shallow landslides.
We multiply the experimental measurement value by a coefficient # to simu-
late different root mechanical reinforcement strengths. The effect of the root
mechanical strength on the landslide damage volume is shown in Figure 21.
As the mechanical strength of the root system decreases, the volume of the
landslides gradually increases, indicating that mechanical root reinforcement
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Figure 20. The red line is the relationship between AP, + P, (the sum of
antecedent weighted and same-day rainfall) and the soil moisture content. The
blue line is the relationship between AP,y + P, and the landslide volume. The
red triangle points indicate that shallow landslides may occur in the watershed
when the average soil moisture content is greater than 24.03%.

in local soil moisture content and local pore water pressure, thereby reducing
soil structural strength and increasing soil sliding force. When the unfavora-
ble factors of vegetation root diversion offset the mechanical reinforcement
of the slope by the vegetation, the vegetation is not conducive to the stability
of the slope.

6. Summary and Conclusions

In this paper, the SWAT model and the D-LHT model are combined to
develop a catchment-scale, day-scale numerical model to analyze soil slope

instabilities induced by rainfall. The SWAT model considers hydrological processes such as vegetation evapotran-

spiration and canopy interception, which improves the accuracy of the coupled model.

Additionally, the model established in this paper does not limit the sliding surface to only the bedrock surface but
calculates the depth of the wetting front through rainfall infiltration. Additionally, the iterative calculation method
was used to search the most dangerous sliding surface in the soil profile. It also expands the scope of application
of the coupling model. Some process-based insights from this study are summarized as follows:

1. According to forecasted daily rainfall data, the proposed model can be used to predict the date, scale, and
spatial distribution of shallow landslides well in advance.

2. The sensitivity analysis results show that the model is highly sensitive to the soil type, soil moisture content,
slope, and internal friction angle.

3. Single-day rainfall is an important external factor affecting soil stability but is not the only decisive factor.
When shallow landslides or debris flow events are predicted, the synergistic effects of various factors such as
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Figure 21. The influence of root mechanical strength on landslides volume,
where ¥, is the landslide volume and V ¢ is the landslide volume when the
reduction factor n = 1.0.

changes in soil water content, soil mechanical properties, and internal friction
angles should be considered.

In general, the numerical model adopted in this paper can not only predict the
date, spatial distribution and volume of landslides but also provide a refer-
ence for deducing the occurrence time, scale, and spatial distribution of most
landslides in small basins with sparse data. It provides a possible new method
for real-time shallow landslides instability prediction and warning systems.
We intend to use the model for more case studies in the future and expect
our model to be incorporated into an early warning system to analyze and
predict multiple occurrences of landslides simultaneously and to issue alert
messages.

Additionally, only one-dimensional vertical infiltration of water was consid-
ered in this model, and the lateral flow of groundwater was neglected. This
approximation could improve the computational speed of the model but could
also bias the physical understanding of shallow landslide triggering. Further
effort is required to advance the physical understanding of shallow landslide
triggering at the watershed scale in a fully three-dimensional, time-dependent
context.
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Appendix A: The SWAT Hydrological Model

On the basis of several sub-watersheds dividing the watershed, the SWAT model performs overlay analysis
according to land use, topography, and soil data and generates a smaller modeling unit called the Hydrological
Response Unit (HRU) according to their unique combination relationship. Therefore, watersheds are heteroge-
neous, while HRUs are homogeneous. Each HRU is the minimum calculation unit of the SWAT model, which
calculates the overall water balance of the HRU by calculating processes such as precipitation, interception,
filling, runoff, evaporation, infiltration (and regression flow). To avoid reducing the calculation efficiency of
the model due to too many HRUs, identical HRUs within the same sub-basin are merged. The hydrological
response unit is composed of multiple quadrilateral grids. After the calculation of the hydrological process,
the basic data on the original quadrilateral grid is interpolated to the hexagonal grid by the inverse distance
weighting method. Then, the hexagonal grid is used to calculate the instability failure of the soil (Von Ruette
et al., 2013). For ease of presentation, after the simulation, the hexagonal grid is interpolated to a quadrilateral
grid in the same way.

Al. Runoff

In this model, surface runoff is simulated by the Soil Conservation Service (SCS) model, which requires fewer

parameters and is not limited to existing measured data. This method can accurately simulate the runoff generated

by the underlying surface of various land use types and soil types. The formula for surface runoff is as follows:
(Ri — 1)’

- Al
qurf Rd — Ia +S ( )

where Qy,¢ is the surface runoff (mm), R, is the rainfall (mm), I, represents the infiltration, evapotranspiration and

interception-induced rainfall losses (mm), .S is the maximum possible retention (mm), and .S = 25.4 % —-10),
where C is a parameter that reflects the pre-water condition of the soil, which is obtained by calibration, and is
denoted by CN2 in Table 2. The condition for generating runoff is that the daily precipitation is greater than the
initial rainfall loss.

A2. Evapotranspiration

The calculation of evapotranspiration mainly includes plant and soil evapotranspiration. The calculation formula
of plant evapotranspiration is as follows:

E="2p 0<LAI<30
3.0 (A2)

E = E, 30<LAI

where E, is the maximum plant transpiration (mm), E; is the potential evapotranspiration (mm), and LAI is the
leaf area index (mm?/mm?).

The calculation formula of soil moisture evapotranspiration is as follows:

’ Z

Ebui z = ES !
: Z + exp(2.347 — 0.00713 # z) (A3)

where Eq . is the soil moisture evapotranspiration (mm), E,” is the potential soil evaporation (mm), and z is the
soil depth (mm).

A3. Soil Water

The calculation formula of the water volume lost to seepage is as follows:

(A4)

2 % SVV]y,excess * Ksal * SLP
Weeep = 0.024

@a * Lnin
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where SWiy excess 18 the discharge water volume in the soil-saturated layer (mm), K, is the saturated hydraulic
conductivity of the soil (mm/h), SLP is the average slope of a HRU (mm/mm), ¢, is the porosity (mm/mm), and
L is the slope length (m).

A4. Ground Water

Ground water exists in the baseflow forms and is a stable recharge source of surface runoff. The calculation
formulae are as follows.

Ogvi = Quwin1 eXp(—agw * /A1) + Wi [1 — exp(—agy * At)] (A5)
W, = [1 —exp [— * Wseep + exp(—%) * Wi (A6)
W

Where a,, is the dissipation factor of ground water, W, ; is the water input into the groundwater reservoir in step
i (mm), Qgv, is the groundwater flowing into the river channel in step i (mm), and &g, is the lag time for water
input into the groundwater reservoir (/).

Appendix B: Determining the Direction of the Soil Column Instability

We number the six surrounding soil pillars No. 0 to No. 5 (k =0, 1,2, 3,4, 5) and establish the positional rela-
tionship between the soil pillars. The barycentric coordinates of the central soil column i, j is expressed as
(xij,yij» zi,j)- The horizontal distance between centers of hexagonal cells is L,. The barycentric coordinates of
the adjacent soil columns are expressed as:

;

V3 k
Xk = TLg COS(Eﬂ') +X,',j,
_ V3, <k )+ B
P Yk = T g COS gﬂ.’ Yijs (Bl)

Z0 = Z6 = Zij+1, 21 = Zi-1,j, 22 = Zi-1,j-1,

Z3 = Zij—1,24 = Zi4l,j—-1, 25 = Zitl,j

The vector coordinates from the center of gravity of adjacent soil columns to the center of gravity of the central
soil column (x}, ,, z;) are expressed as:

3
X, = 4Lg cos(%n
3
Y, = 4Lg cos(%n (B2)
Z, =2k — Zij
The sum vector coordinates of adjacent soil columns (x]’( i Veret® Zrsel ) are expressed as:
V3, (K k
= - Leeos(5 >+—L os(57)
V3, (K k (B3)
s = 5 Lecos(37) + —L reos(37)
Z,(V,(Jrl = Zk + Zi41

The projection vector of the center of gravity vector in the xy plane is Dy k41 (kK = 0, 1,2, 3,4,5). The projection
vector of the movement direction vector of the central soil column on the two-dimensional plane is (x,f’j, ylffj).

According to the principle of least action, the sum vector with the lowest center of gravity

mln(z k] )(k =0,1,2,3,4,5)is taken as the direction vector of soil column movement. The projection vector of
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’j.), where

The projection vector of the movement direction of the surrounding soil column on

the movement direction of the central soil column on the two-dimensional plane is expressed as (x,f_’j, ¥

VA ! S /
X =X andyl =y

the two-dimensional plane is expressed as (x!’

/!
K Vi)
The formula for calculating the angle between adjacent soil columns is as follows:
" " /! /!
Xig ¥ X TV Yy

0, = arccos : (B4)

"2 "2 "2 72
\/xf,j Ty VX T

When the angle between the movement direction vectors of adjacent soil columns is an acute angle, then the force
between the soil columns is compressive; when the angle between the movement direction vectors of the adjacent
soil columns is an obtuse angle, then the force between the soil columns is tensile.

If 6, < %then T;‘,k = —Trk
If 6, = % thenz), =0 (B5)
If 6, > % then T;',k =Trk
where 77 represents the force exerted on the central soil column by a surrounding soil column that is unstable.

7;., represents a force exerted on the central soil column by the surrounding soil column and is used to calculate
the sliding force.

Notation

Agw the dissipation factor of groundwater.

Ay the area of a soil column with a hexagonal cross-section, m2.
A; the intersection area between two adjacent columns, m?.
ARAR the ratio of the root area and the area with rooted soil.

Csoil the soil cohesion, kg/(ms?).

Saw the lag time for water input the reservoir of ground water, h.
E, the water volume lost via evapotranspiration in step 7, m.

E; the potential evapotranspiration, m.

E,” the potential soil evaporation, m.

Eoi.- the soil moisture evapotranspiration, m.

E, the maximum plant transpiration, m.

FOS the factor of safety.

g the acceleration due to gravity, ms=2.

h the capillary pressure head, m.

hy the air-entry value, m.

h; the height of the free water table in the soil column, m.

H, the distance from the sliding interface to the ground surface, m.
Hpond the depth of runoff, m.

1 the total infiltration of water, m.

I, the infiltration evapotranspiration and interception-induced rainfall losses, m.
K a dimensionless correction parameter.

Kat the saturated hydraulic conductivity of the soil, mh~".

A the pore size distribution parameter.

LAI the leaf area index

Lyin the slope length, m.

Lg Lg, m.

M the total mass of a soil column, kg.

N, the compressive load acting on the column.

NSE the Nash-Sutcliffe efficiency coefficient.
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% the porosity.
@ the porosity.
(o)™ the total underground water in step 7, m.
Qgw,i the groundwater of flowing into the river channel in step i, m.
Osurt the total surface runoff in step i, m.
R the total precipitation in step i, m.
Ry the rainfall, m.
SW; the end water content of a time step in the SWAT model.
SWo the soil moisture content at the previous time step in the SWAT model.
S the maximum possible retention, m.
SWiy excess the discharge water volume in the soil-saturated layer, m.
SLP the average slope.
Sy the slope, °.
S} the effective water saturation.
0 the volumetric water content.
0, the residual water contents.
0 the maximum volumetric water content.
6; the soil initial moisture content.
Cn the soil column normal stress, kg/(m?).
T the shear strength, kg/(ms?).
TR the residual soil strength after failure at the sliding surface, kg/ (m sz).
Tet the shear stress of slope runoff, kg/ (m 52)‘
Trs,z the shear strength (as a function of depth) provided by roots, kg/ (m sz).
2 the shear stress, kg/(ms?).
Tr the stress from the upslope columns or downslope columns when the soil column is unsta-
ble, kg/(ms?).
Tr the experimentally measured root tensile strength, kg/ (m s? )
Wseep the water volume lost via seepage in step i, m.
w the downslope force component of the soil column on the slip interface, kg/ (m s? )
Wy the total sliding force of the soil column on the slip surface, kg/ (m sz).
Wi the water of input the reservoir of ground water in step i, m.
Yo the bulk densities of the water and soil minerals, kg m=.
Yr the bulk densities of the soil minerals, kg m=>.
z the soil depth, m.
Zy the depth of the wetting front, m.
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