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A B S T R A C T   

Heavy precipitation is the main trigger for debris-flow hazards. The antecedent moisture condition, which is 
usually represented by antecedent precipitation, is another hydrometeorological contributing factor to debris 
flows that originate from shallow landslides. Satellite techniques are an economical and effective way to access 
rainfall and soil wetness information to determine the triggering conditions of debris flow. However, satellite- 
based thresholds need to be compared with ground-based thresholds and adjusted to the data source prior to 
their application. In this study, rainfall intensity-duration (I-D) thresholds were derived from the early and final 
run products of the Integrated Multi-satellitE Retrievals for Global Precipitation Measurement (IMERG-E and 
IMERG-F) and gauge measurements using logistic regression for debris flows in the Jiangjia Gully, Yunnan 
Province, southern China, which has a dense rain gauge network. Data from both the IMERG-E and IMERG-F 
covered the entire study period. Our evaluation revealed that the I-D threshold derived from the IMERG-E 
deviated from the gauge-based thresholds. Although the threshold determined by the IMERG-F was compara
ble to the ground-based ones, the presence of substantial false positives and false negatives indicated that its 
performance was weaker than that of the gauge-based ones. Furthermore, the IMERG-F was suitable if the 
nearest available gauge was farther than 10 km from the debris-flow initiation zone. We evaluated the feasibility 
of the surface soil moisture product provided by the Climate Change Initiative program of the European Space 
Agency (CCI-SM), root-zone soil moisture derived from the CCI-SM using an exponential filter (SM-RZ), and 
antecedent precipitation for improving the performance of the thresholds by separately using them as the third 
explanatory variable in addition to rainfall intensity and duration in logistic regression. Satellite soil moisture 
data were available for 54% of the study period. The results suggested that including antecedent precipitation 
effectively improved the performance of the thresholds. In contrast, the performance of the thresholds increased 
only slightly when the CCI-SM or SM-RZ was included. Although these findings are valid only for this study area 
and need to be assessed for other regions, they present new insights for using satellite rainfall and soil moisture 
estimates to define thresholds for debris flow.   

1. Introduction 

Debris flows occur when masses of poorly sorted sediment that are 
agitated and saturated with water surge down slopes due to gravity 
(Iverson, 1997). Because of their high velocity and sediment volume, 
torrential debris-flow events endanger human lives and infrastructure. A 
catalogue compiled by Dowling and Santi (2014) reported 77,779 
deaths from 213 global debris-flow events that occurred during 
1950–2011. To mitigate debris-flow hazards, local or regional rainfall 
thresholds that indicate the triggering rainfall conditions of such 

hazards have been proposed using historical data (Coe et al., 2008; 
Badoux et al., 2009; Staley et al., 2013; Zhuang et al., 2015; Giannec
chini et al., 2016; Neptune et al., 2021). 

Debris flows are initiated in two ways. They either originate from 
landslides (Iverson et al., 1997) or occur when the accumulated matter 
on hillslopes or in channels gets eroded and is mobilized by runoff 
(Gregoretti et al., 2016). Both physical simulations and in-situ mea
surements have highlighted the importance of antecedent soil moisture 
content in triggering shallow landslides as increased moisture content 
increases the soil weight and reduces matric suction (Tsai and Tsai and 
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Chen, 2010; Hawke and McConchie, 2011; Mirus et al., 2018; Marino 
et al., 2020; Wicki et al., 2020). Therefore, it is expected that antecedent 
soil moisture conditions also impact triggering rainfall conditions of 
debris flows that originate from landslides (Johnson and Sitar, 1990). 
Existing studies have reported conflicting results on the importance of 
antecedent soil moisture in triggering runoff-generated debris flows. 
Some studies have shown that antecedent soil moisture is not significant 
in predicting debris-flow events (Deganutti et al., 2000; Coe et al., 2008; 
Hirschberg et al., 2021). However, a study from the Réal Torrent in the 
Southern French Prealps, showed that antecedent rainfall contributes to 
debris-flow triggering (Bel et al., 2017). Due to the lack of ground soil 
moisture observations, antecedent soil moisture is commonly 
substituted by antecedent precipitation in landslide forecasting models 
(Tien Bui et al., 2013; Vasu et al., 2014; Garcia-Urquia, 2016; Chikalamo 
et al., 2020; Ni and Song, 2020). In recent years, satellite soil moisture 
products have been used in landslide hazard assessments owing to the 
increased availability of remote sensing data for soil moisture retrieval 
(Ray et al., 2010; Brocca et al., 2016; Cullen et al., 2016; Zhuo et al., 
2019). A study in central Italy showed that satellite-derived soil mois
ture outperforms antecedent precipitation in forecasting landslide 
movements (Brocca et al., 2012). A similar study is needed to evaluate 
the suitability of remotely sensed soil moisture for the assessment of 
rainfall-driven geohazards in other regions. 

Rainfall thresholds are commonly established using rain gauge 
measurements. However, obtaining accurate rainfall data in moun
tainous regions is a major challenge (Guo et al., 2021). Several topo
graphic factors, including altitude, slope, aspect, proximity to moisture 
sources, and exposure, affect the spatial distribution of rainfall (Al- 
Ahmadi and Al-Ahmadi, 2013). Significant discrepancies can exist in the 
observations of different gauges located a few kilometers apart (Kra
jewski et al., 2003; Gregoretti et al., 2016; Simoni et al., 2020). Because 
gauges are usually scarce in headwater regions, rainfall thresholds for 
debris flows are commonly derived from the observations of nearby 
gauges (Fan et al., 2018), which in the Alps, are typically located 4–15 
km away from debris-flow sites, where dense networks of rain gauges 
are available (Nikolopoulos et al., 2014). This method tends to under
estimate the rainfall that triggers debris flows (Abancó et al., 2016; Guo 
et al., 2021). Over the past three decades, remote sensing techniques, 
such as radar and satellites, have been used to provide rainfall estimates 
with increasing spatiotemporal resolution and accuracy (Brunetti et al., 
2018). An example of this is the 10 km Integrated Multi-satellite Re
trievals for the Global Precipitation Measurement (IMERG). Compared 
with ground-based rainfall radar networks, satellites can provide rainfall 
estimates at a global scale and can be used for areas with scarce ground 
data. Since the pioneering work of Hong et al. (2006), satellite-based 
rainfall data have been used for determining regional and global 
thresholds of rainfall-driven geohazards (Bhusan et al., 2014; Mathew 
et al., 2014; Kirschbaum and Stanley, 2018; Chikalamo et al., 2020; He 
et al., 2020; Jia et al., 2020; Abancó et al., 2021; Wang et al., 2021b; Li 
et al., 2022). A comparison between gauge-based and satellite-based 
thresholds revealed that the adjustment of satellite rainfall products 
(either gauge-based or by applying an error model) together with spatial 
resolution can improve the estimation of the rainfall thresholds (Niko
lopoulos et al., 2017). In densely gauged areas, gauge-based thresholds 
outperform satellite-based thresholds (Brunetti et al., 2018), and vice- 
versa in sparsely gauged regions (Brunetti et al., 2021). Considering 
that both gauge rainfall measurements and satellite observations have 
higher uncertainties in mountainous areas (Tan et al., 2017; Bulovic 
et al., 2020; Lu et al., 2021; Pradhan et al., 2022), comparing rainfall 
thresholds derived from different gauges and thresholds from satellite 
estimates at a local scale is beneficial for assessing the feasibility of 
satellite-based thresholds. However, such research studies have 
remained scarce. 

Therefore, the aim of this study was to assess the potential of 
satellite-based rainfall and soil moisture estimates in determining the 
triggering conditions of debris flow in the Jiangjia Gully, which is an 

active debris-flow catchment. This area has a dense rain gauge network, 
and the debris-flow triggering therein is partly attributed to landslides 
(Yang et al., 2022). We first compared the characteristics of debris-flow- 
triggering rainfall derived from different rain gauge observations and 
rainfall estimates from the IMERG. We then defined the rainfall 
intensity-duration threshold for each rainfall dataset, and evaluated the 
performance of these thresholds using statistically based skill scores. 
Furthermore, as a third predictor variable, both satellite-based soil 
moisture (surface and root zone) and antecedent precipitation were 
tested. 

2. Details of study location and datasets 

2.1. Study location 

The Jiangjia Gully is located in northeastern Yunnan Province of 
southern China and has a drainage area of 48.6 km2. Debris flows are 
active in this watershed because of the erosion- and landslide-prone 
conditions, which are related to the presence of fractured bedrock, 
steep terrain (elevation of 1040–3260 m a.s.l.), and abundant moisture 
brought on by the summer monsoon. To study debris-flow activity in the 
watershed, the Chinese Academy of Sciences (CAS) in 1965, installed the 
Dongchuan Debris Flow Observation and Research Station (DDFORS). 
Since its establishment, >500 debris-flow events have been recorded, 
and each comprises tens or hundreds of surges (Guo et al., 2020). 

The Menqian and Duozhao Gullies are the two largest tributaries, 
contributing 64.7% of the drainage area. Several check dams were built 
in the Duozhao Gully between 1979 and 1990, thereby greatly 
decreasing the debris-flow activity in this tributary. Currently, debris 
flows in the monitoring section of the main channel (Fig. 1) are pri
marily discharged from the Menqian Gully, which covers an area of 13.2 
km2. The exposed bedrock is fractured in the Jiangjia watershed and 
mostly disintegrates into particles of 20–100 mm. In addition, the basin 
is characterized by steep terrain, with 68% slopes of >25◦. Gentler 
slopes are present close to the divides and are used as terraces. Both the 
fractured bedrock and the steep slopes facilitate an intense gully inci
sion, which adds to the widespread development of landslides. Some 
landslides directly evolve into debris flows, whereas others release 
sediment into the channels, which is then mobilized by runoff (Yang 
et al., 2022). 

The Jiangjia Gully located in the transition zone of the Indian sum
mer monsoon and East Asian summer monsoon domains is characterized 
by a subtropical monsoon climate. The mean annual precipitation varies 
from 400 to 1000 mm and generally increases with elevation. Approx
imately 85% of the total annual rainfall occurs between May and 
October (Cui et al., 2005). Abundant rainfall in summer is the main 
contributor to the frequent episodes of debris flows (Guo et al., 2021). 

2.2. Satellite data 

The satellite rainfall data used in this study were obtained from the 
IMERG V06B product, which is available at https://gpm.nasa.gov/data/ 
directory. The IMERG algorithm integrates information from multiple 
sources, including satellite microwave precipitation estimates, infrared 
satellite estimates, and rain gauge analyses (Huffman et al., 2019). The 
IMERG has a pixel resolution of 0.1◦ (~10 km) and an interval of 30 min, 
spanning 60◦ N to 60◦ S. Several studies have found IMERG observations 
to be reliable in comparison to gauge or radar observations (Sahlu et al., 
2016; Siuki et al., 2017; Salles et al., 2019; Thakur et al., 2019; Tang 
et al., 2020; Thakur et al., 2020; Sakib et al., 2021; Yu et al., 2021). The 
IMERG was run three times during each observation: an early run giving 
a quick estimate (latency of ~4 h), a late run with a better estimate 
owing to more data availability (latency of ~14 h), and a final run using 
monthly gauge data to create research-level products (latency of ~3.5 
months). The early run product (IMERG-E) was used in this study 
because real-time precipitation data are needed for early warning 
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system of debris flow. In addition, the final run product (IMERG-F) was 
used for its superior performance (Zhou et al., 2021). Two IMERG grid 
cells covered the Jiangjia Gully, with percentages of 91.3% and 8.7%. 
We used rainfall estimates sampled from the major grid cell. 

The satellite soil moisture data used in this study were obtained from 
the V06.1 product of the Climate Change Initiative program of the Eu
ropean Space Agency (CCI-SM), which can be accessed at https://data. 
ceda.ac.uk/neodc/esacci/soil_moisture/data. The CCI-SM merges 
active and passive microwave soil moisture products from multiple 
sensors, thereby providing global soil moisture estimates at a spatial 
resolution of 0.25◦ (~25 km) and a daily time step for the 1978–2020 
period. Since its first release in 2012, product quality has steadily 
increased with each successive release (Dorigo et al., 2017). Several 
studies have evaluated the reliability of the CCI-SM using ground-based 
measurements, and the unbiased root mean square error is generally 
reported as 0.04 m3/m3 (Dorigo et al., 2015; An et al., 2016; Ma et al., 
2019; Wang et al., 2021a). Four products are currently available: an 
active-microwave-based-only product, a passive-microwave-based-only 
product, a combined active-passive product, and an experimental break- 
adjusted product that attempts to reduce breaks in the combined prod
uct. For this study, the experimental break-adjusted product was used. 
Two CCI-SM pixels covered the study area, with percentages of 57.8% 
and 42.2%. We used the mean of the sampled estimates from these two 
pixels. Satellite sensors can only detect soil water content within the 
near-surface soil layer (<5 cm). However, shallow landslides typically 
involve soil mantles with thicknesses of 1–2 m (Fiorillo et al., 2001). 
Therefore, the exponential filter method described by Wagner et al. 
(1999) was used to derive root-zone soil moisture (SM-RZ) from near- 
surface soil moisture: 

SM − RZ(t) =

∑

i
CCI − SM(ti) • exp

(
−

(t− ti)
tc

)

∑

i
exp

(
−

(t− ti)
tc

) for ti ≤ t (1)  

where SM-RZ(t) is SM-RZ at time t, CCI-SM(ti) is CCI-SM at time ti, and tc 
is the characteristic time length representing the time scale of soil 
moisture variation with depth. The suggested value of tc is 20 days for 

the 0–1 m soil layer. 

2.3. Debris flow and rain gauge data 

Debris flow and rain gauge data recorded during 2006–2010 in the 
Jiangjia Gully were used in this study due to the high incidence of debris 
flow and richness of rainfall data during this period. The CAS provided 
these data from the DDFORS. Table 1 shows the debris-flow catalogue 
demonstrating the exact time of occurrence for 32 debris-flow events 
and for one event only the occurrence date. All these events were 
observed in the monitoring section of the main channel (Fig. 1). The 
DDFORS staff manually recorded the debris-flow occurrence; the 

Fig. 1. Location and terrain of the Jiangjia Gully in northeastern Yunnan Province.  

Table 1 
Occurrence times of debris-flow events triggered in the Jiangjia Gully during 
2006–2010 (day/month/year hh:mm).  

Number Occurrence 
time 

Number Occurrence 
time 

Number Occurrence 
time 

1 
5/7/2006 
02:33 12 

14/9/2007 
01:30 23 

5/8/2008 
14:04 

2 
6/7/2006 
03:35 13 

17/9/2007 
15:12 24 

8/8/2008 
03:02 

3 
15/8/2006 
21:59 14 

1/7/2008 
15:55 25 

11/8/2008 
02:33 

4 
20/8/2006 
23:45 15 

5/7/2008 
06:26 26 

17/8/2008 
19:00 

5 
10/7/2007 
04:20 16 

11/7/2008 
06:48 27 

4/8/2009 
05:24 

6 
24/7/2007 
06:30 17 

11/7/2008 
17:45 28 

6/7/2010 
05:23 

7 
25/7/2007 
02:36 18 

22/7/2008 
05:00 29 

17/7/2010 
20:39 

8 
25/7/2007 
14:24 19 

1/8/2008 
00:15 30 

22/7/2010 
19:15 

9 
30/7/2007 
05:40 20 

3/8/2008 
04:50 31 

24/7/2010 
19:00 

10 
11/8/2007 
14:27 21 

3/8/2008 
22:35 32 

5/8/2010 
05:51 

11 25/8/2007 22 
4/8/2008 
15:37 33 

10/9/2010 
03:26  
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observation station was occupied only for 2–3 months during the 
monsoon period each year. This study refers to this period as the debris- 
flow observation period. The debris-flow observation periods in 
2006–2010 included July 1–August 31 in 2006, July 1–September 17 in 
2007, July 1–August 31 in 2008, July 1–August 31 in 2009, and July 
1–September 10 in 2010. 

Nine tipping bucket rain gauges were used during the study. Fig. 1 
shows the locations of these gauges, which had elevations between 1346 
and 2816 m. The gauges recorded the rainfall depth at an interval of 1 
min. However, interrupted power supply and technical issues resulted in 
discontinuous measurements. Consequently, the period with available 
rainfall data varied from gauge to gauge, and Table 2 lists the specific 
measurement periods for each gauge. The 1-min gauge rainfall data 
were aggregated to half-hourly rainfall data to objectively compare the 
thresholds derived from the different rainfall data sources; thus, they 
had the same time interval as the satellite data. Since satellite obser
vations act as an integrator over the area within one grid cell, the 
average of all rain gauge measurements (RA) was calculated and used as 
an additional dataset for a more realistic comparison. 

3. Methods 

3.1. Design for evaluating the feasibility of satellite rainfall product 

The widely used power-law relationship between mean intensity (I) 
and rainfall duration (D), I = αD− β, was used to represent the rainfall 
conditions for debris-flow occurrence. Dividing the long-term half- 
hourly rainfall sequences into individual events is essential for calcu
lating I and D of a rainfall event. There are no standard criteria for 
separating rainfall time series (Jiang et al., 2021). In this study, a min
imum time interval, tmin, with a maximum rainfall depth, Pmax, was used 
to separate the rainfall events (Peres et al., 2018). Following the study of 
Zhou and Tang (2014), 6 h was selected for tmin. Pmax can be estimated as 
the potential evapotranspiration corresponding to tmin (Marino et al., 
2020). In the study area, the mean daily potential evapotranspiration 
was approximately 4 mm during the rainy season. Thus, 1.0 mm was 
selected as the Pmax. 

Rainfall events during the debris-flow observation periods were 
classified as debris-flow-triggering events (DFs) and non-triggering 
events (NDFs). When debris flows were triggered during a rainfall 
event or within 6 h (tmin used in this study) after the cessation of a 
rainfall event, the event was regarded as a DF. In general, it is impossible 
to divide rainfall conditions into a 100% debris-flow occurrence field 
and a 100% non-occurrence field. Therefore, we used logistic regression 
to determine the probabilistic rainfall thresholds of debris flow. In this 
approach, the probability of debris-flow occurrence (p) is expressed as a 
Sigmoid function of the linear combination of the explanatory variables: 

ln
(

p
1 − p

)

= a0 +
∑n

i=1
aiXi (2)  

where ai is the linear coefficient of the ith predictor, Xi, and n is the 

number of predictors. While deriving the I-D threshold, the predictors 
are ln(I) and ln(D): 

ln
(

p
1 − p

)

= a0 + a1ln(I)+ a2ln(D) (3) 

The equation can then be converted to the following forms: 

ln(I) =
ln
(

p
1− p

)
− a0

a1
−

a2

a1
ln(D) (4)  

I = exp

⎛

⎜
⎜
⎝

ln
(

p
1− p

)
− a0

a1

⎞

⎟
⎟
⎠ • D−

a2
a1 (5) 

Comparing with the power-law relationship I = αD− β, α and β can be 
obtained as: 

α = exp

⎛

⎜
⎜
⎝

ln
(

p
1− p

)
− a0

a1

⎞

⎟
⎟
⎠ (6)  

β =
a2

a1
(7) 

The performance of the logistic regression model was evaluated 
using a receiver operating characteristic (ROC) analysis (Staley et al., 
2013; Gariano et al., 2015; Giannecchini et al., 2016; Ju et al., 2020). 
First, different possible thresholds were given by assigning different p 
values in Eq. (6). For each threshold, the rainfall events were further 
classified into four groups: true positives (TP; DFs with rainfall condi
tions exceeding the threshold), false positives (FP; NDFs with rainfall 
conditions exceeding the threshold), true negatives (TN; NDFs with 
rainfall conditions below the threshold), and false negatives (FN; DFs 
with rainfall conditions below the threshold). The case of a debris-flow 
event without associated rainfall was also identified as an FN. It 
occurred either when the rainfall was considerably less to be defined as 
an event according to the criteria used in this study or when the rainfall 
was only measured by some of the gauges. To be distinguished from 
“normal” FN, this case was denoted as FN′. Second, the two skill scores, 
the probability of detection (POD) and probability of false detection 
(POFD), were calculated as follows for each threshold (Staley et al., 
2013): 

POD =
TP

TP + FN + FN′ (8)  

POFD =
FP

FP + TN
(9) 

The perfect values for the two scores are 1 and 0, respectively. The 
POD obtained from each probabilistic threshold was plotted against the 
POFD to form an ROC curve. The area under this curve (AUC) varies 
between 0.5 (no improvement over random guessing) and 1.0 (perfect 

Table 2 
Time periods with available rainfall data for each rain gauge (R1–R9) and the gauge-averaged dataset (RA) in debris-flow observation periods during 2006–2010 (day/ 
month).  

Rain gauge Elevation/m 2006 2007 2008 2009 2010 Available days 

R1 2816 1/7–31/8 1/7–17/9 1/7–31/8 1/7–31/8 1/7–10/9 337 
R2 2724 Null 1/7–17/9 1/7–31/8 1/7–31/8 1/7–19/8 253 
R3 2325 Null 1/7–17/9 1/7–31/8 1/7–31/8 1/7–10/9 275 
R4 2181 1/7–31/8 1/7–17/9 1/7–31/8 1/7–31/8 1/7–10/9 337 
R5 1346 1/7–31/8 1/7–17/9 1/7–31/8 1/7–31/8 1/7–10/9 337 
R6 1865 1/7–22/8 1/7–17/9 1/7–31/8 1/7–31/8 Null 256 
R7 2230 Null 5/8–17/9 12/7–31/8 1/7–31/8 1/7–10/9 229 
R8 2290 1/7–31/8 1/7–17/9 16/7–31/8 1/7–31/8 1/7–5/7 255 
R9 2681 Null 1/7–17/9 1/7–31/8 1/7–31/8 15/8–10/9 230 
RA  1/7–31/8 1/7–17/9 1/7–31/8 1/7–31/8 1/7–10/9 337  
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discrimination). We used AUC to evaluate the discriminatory power of 
different rainfall datasets in distinguishing DF from NDF conditions. The 
ROC curve indicates all possible thresholds and their relative balance 
between POD and POFD, and one is free to choose the optimal threshold 
depending on whether to maximize the POD or to minimize the POFD 
(Uwihirwe et al., 2022). To balance the two skill scores, we used the 
radial distance (RD) from the upper left corner of the ROC space (perfect 
classification point) to each (POFD, POD) data pair to select the optimal 
threshold (Gariano et al., 2015): 

RD =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − POD)
2
+ POFD2

√

(10) 

The perfect value for RD is 0. Therefore, the threshold with the 
minimum RD was defined as the optimal threshold. In addition to AUC, 
we used RD to evaluate the best-performing rainfall thresholds derived 
from different data sources. 

3.2. Design for evaluating the feasibility of satellite soil moisture product 

For each rainfall event, the satellite-based soil moisture with mea
surement time immediately prior to the onset of rainfall was identified. 
If the interval between the measurement time and the beginning of 
rainfall was <24 h (time step of the CCI-SM), the soil moisture was 
regarded as the initial moisture of the corresponding rainfall event. 
Unlike the IMERG data, which covered the entire study period, CCI-SM 
data for 46% of the study period were missing. Therefore, soil moisture 
data were only available for some of the rainfall events, which were used 
for further analysis. 

Four cases were subjected to the logistic regression. In the first case, 
ln(I) and ln(D) were used as predictors as shown in Eq. (3). In other 
cases, antecedent precipitation (AP), CCI-SM, and SM-RZ were used as 
additional predictors. AP was calculated using the following equation 
(Bruce and Clark, 1966): 

AP =
∑m

i=1
kiPi (11)  

where Pi is the rainfall depth measured in the ith 24 h prior to the rainfall 
event, m is the number of days considered, and k is the decay factor. The 
suggested values for m and k are 7 and 0.84, respectively (Yang et al., 
2020). To determine whether the original or the logarithmic form of AP, 
CCI-SM, and SM-RZ should be used, the statistical significance of each 
form was evaluated with the Wald test, which is a hypothesis test per
formed on the parameters calculated by the maximum likelihood esti
mation, using the corresponding form as the single explanatory variable 
in the logistic regression. The more significant form was selected. 

The performance of the thresholds defined in different cases was also 

evaluated using the AUC and the RD of the optimal threshold. Because of 
the incomplete soil moisture data in the debris-flow observation periods, 
nearly half of the DFs had no associated information. Treating these 
cases as FN′ would result in a much smaller POD score. Therefore, FN′

was removed from Eq. (8) when the satellite soil moisture product was 
evaluated. 

4. Results 

4.1. Characteristics of DFs 

Fig. 2 shows the distribution of D and I in the DFs in the Jiangjia 
Gully according to the gauge observations and IMERG. D fluctuated from 
0.5 to 56.5 h, whereas I varied between 0.39 and 16.67 mm/h. However, 
the 75th percentiles for D and I were smaller than 15 h and 7.5 mm/h, 
respectively. The calculated distributions of D and I differed from gauge 
to gauge, indicating notable spatial heterogeneity in the rainfall of the 
study area. Compared with the rain gauge data, both the IMERG-E and 
IMERG-F generally overestimated the rainfall duration and under
estimated the mean intensity. For instance, Fig. 3 illustrates the rainfall 
time series on August 11, 2007 in each dataset; the D and I calculated 
from gauge observations ranged from 2.5 to 6.0 h and from 2.13 to 6.37 
mm/h, while D was >15 h and I was approximately 1.00 mm/h, ac
cording to the IMERG data. 

4.2. Performance of the I-D thresholds derived from different rainfall 
datasets 

Table 3 lists the number of DFs and NDFs for each rainfall dataset; 
their sum is the total number of rainfall events in the debris-flow 
observation periods during 2006–2010. Rainfall datasets from the R1, 
R4, R5, RA, and IMERG were complete in the observation periods and 
therefore were comparable. The gauge installed at the highest elevation 
(i.e. R1) detected the highest number of rainfall events (141), whereas 
the gauge installed in the valley (i.e. R5) detected the lowest number of 
rainfall events (100), indicating that some rainfall events occurred only 
in the headwater regions. Furthermore, the probabilistic thresholds 
derived from the gauges located in the main active tributary (i.e. R1–R3) 
had higher AUC values than those derived from the other gauges, except 
R4. These gauges detected nearly all DFs, with FN’ equivalent to 0 or 1. 
In contrast, at least two DFs were not detected by the other gauges, 
except R4. This may account for the difference in the AUC values. For 
RA, FN’ was equivalent to 0 and the AUC was high. Although the total 
number of rainfall events derived from the IMERG-E (138) and IMERG-F 
(132) was nearly equal to that of RA (133), 5–6 DFs were not detected by 
them. In addition, a large number of FP and FN were present; thus the 

Fig. 2. Box-Whisker plots showing the distribution of (a) duration and (b) mean intensity of DFs according to rain gauge observations (R1–R9 and RA) and satellite- 
based estimates. I-E and I-F represent IMERG-E and IMERG-F, respectively. The whiskers extend from the minimum to the maximum. The bottom and top edges of the 
box indicate the 25th and 75th percentiles. The middle line and the square show the median and mean. 
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AUC was smaller than that of the gauge observations. 
The optimal threshold derived from each dataset is listed in Table 3 

and presented in Fig. 4. The thresholds derived from the gauge data 
exhibited great variability, with α and β varying in the ranges 
5.83–13.86 and 0.74–1.14, respectively. This indicates that a rainfall 
threshold from one gauge cannot simply be applied to another one, i.e. 
that it is crucial to fit the threshold to the characteristics of one rain 
gauge observation. The RD values of these thresholds were between 
0.238 and 0.425, with the minimum value obtained by R2, which also 
had the maximum AUC. The parameters α and β defined by the IMERG-E 
were 70.67 and 2.24, respectively, and were much higher than the 
gauge-based threshold parameters. In contrast, the two parameters 

defined by the IMERG-F were 6.14 and 0.99, respectively, and were 
within the range of gauge-based threshold parameters. Compared with 
the threshold parameters of RA, their relative differences were 3% and 
35%, respectively. These results show the feasibility of IMERG-F in 
determining thresholds. However, the RD was 0.511, which was 
considerably higher than that of the gauge-based thresholds. Therefore, 
the IMERG-F was weaker than the gauge measurements in terms of the 
discriminatory power to distinguish DF from NDF conditions. 

4.3. Performance of thresholds including initial soil wetness conditions 

Table 4 lists the p-values of the Wald test when using the AP, CCI-SM, 
and SM-RZ or their logarithms as the single explanatory variable in the 
logistic regression. For all rainfall datasets, the p-value using ln(AP) was 
smaller than that using AP, whereas the p-values using ln(CCI-SM) and 
ln(SM-RZ) were comparable to the values using CCI-SM and SM-RZ, 
respectively. Therefore, for simplicity, ln(AP), CCI-SM, and SM-RZ 
were separately used as the third predictor in addition to ln(I) and ln 
(D) in the logistic regression. The AUC of the probabilistic thresholds 
and RD of the optimal threshold were calculated for each rainfall dataset 
and compared with the case where only ln(I) and ln(D) were used as 
predictors (reference case), as illustrated in Fig. 5. Overall, the inclusion 
of ln(AP) in the logistic regression generally performed better than the 
reference case. The average increase was 0.033 for the AUC and the 
average decrease was 0.028 for the RD. The inclusion of the CCI-SM had 
little influence on logistic regression performance. The inclusion of the 
SM-RZ increased the average RD by 0.012 and increased the average 
AUC by 0.007. Therefore, after including the SM-RZ, the overall per
formance was similar to that of the reference case. 

Fig. 3. Half-hourly rainfall time series measured by the gauges (R1–R9 and RA) and IMERG on August 11, 2007. A debris flow event was detected at 14:27 in the 
monitoring section of the main channel. Characteristics of the associated rainfall event (DF) are presented. 

Table 3 
Performance of the I-D thresholds derived from rain gauge measurements 
(R1–R9 and RA) and satellite-based rainfall estimates (IMERG-E and IMERG-F).  

Rainfall 
dataset 

Number of rainfall events FN’ AUC Optimal threshold 

DFs NDFs Total RD Threshold 

R1 30 111 141 1 0.785 0.349 I = 11.20D-1.00 

R2 26 75 101 1 0.860 0.238 I = 9.58D-0.86 

R3 28 77 105 0 0.836 0.361 I = 8.93D-0.80 

R4 31 83 114 1 0.854 0.289 I = 6.86D-0.75 

R5 28 72 100 4 0.686 0.425 I = 6.08D-0.80 

R6 21 56 77 5 0.681 0.396 I = 8.78D-1.14 

R7 18 66 84 2 0.754 0.405 I = 5.83D-0.99 

R8 19 76 95 3 0.772 0.322 I = 13.86D-0.98 

R9 21 69 90 2 0.742 0.379 I = 12.46D-0.98 

RA 32 101 133 0 0.860 0.284 I = 5.96D-0.74 

IMERG-E 25 113 138 6 0.579 0.532 I = 70.67D-2.24 

IMERG-F 26 106 132 5 0.624 0.511 I = 6.14D-0.99  
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Fig. 4. Mean intensity versus duration of DFs (red solid circles) and NDFs (hollow circles) and the optimal thresholds (dashed line) derived from different rainfall 
datasets. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5. Discussion 

5.1. Feasibility of the IMERG-F in the threshold definition of debris flow 

The optimal rainfall threshold of debris flow in the Jiangjia Gully 
defined by the IMERG-F was comparable to that defined by the rain 
gauge data measured in the watershed. Nonetheless, the smaller AUC 
and greater RD values indicate that the performance of the threshold 
was poorer. Therefore, gauge measurements are preferable for gauged 
debris-flow watersheds. For ungauged watersheds, the suitability of the 
datasets—satellite-based estimates or gauge measurements from the 

surrounding areas must be decided. To this end, we assumed that the 
rainfall characteristics measured by gauge R2, which provided the best 
AUC and RD values, represented the “true” DF characteristics. We then 
compared the half-hourly rainfall depth measured by the different 
gauges and IMERG with the data recorded by gauge R2, in the over
lapping periods listed in Table 2, that is, August 5–September 17 in 
2007, July 16–August 31 in 2008, and July 1–August 31 in 2009. Sta
tistical metrics including the Pearson's correlation coefficient (CC), 
mean bias (MB), mean absolute error (MAE), and root mean square error 
(RMSE) were calculated and their values are listed in Table 5. Among 
these metrics, the CC had the strongest correlation with the AUC and RD 
values listed in Table 3, with p < 0.001. Additionally, we calculated the 
CC between the half-hourly rainfall depths measured by each pair of 
gauges. The results showed that the CC was negatively correlated with 
the horizontal distance (HD) between the two corresponding gauges. 
Fig. 6 shows that the CC between the half-hourly gauge-measured 
rainfall depth and IMERG-F data was also negatively correlated with the 
HD between the corresponding gauge and the center of the 0.1◦ × 0.1◦

grid cell used to extract rainfall data in the IMERG-F. The distance be
tween the headwater region of a debris-flow watershed and the center of 
the nearest grid cell of an IMERG-F varies from 0 to approximately 7 km. 
Using the fitting line between the HD and CC for the gauge versus the 
IMERG-F case in Fig. 6 (i.e. CC = 0.4257–0.0279HD), the CC varied 
between 0.228 and 0.426, which corresponded to distances 6.9–9.7 km 
of the fitting line between the HD and CC for the gauge versus gauge case 
(i.e. CC = 0.9111–0.0703HD). This suggests that when the nearest rain 

Table 4 
p-values of the Wald test when antecedent precipitation (AP), satellite-based surface and root-zone soil moisture (CCI-SM and SM-RZ) or their logarithms were used as 
the single explanatory variable in the logistic regression. Rainfall events used in this table are a subset of those shown in Table 3.  

Rainfall dataset Number of rainfall events Explanatory variable 

DFs NDFs Total AP ln(AP) CCI-SM ln(CCI-SM) SM-RZ ln(SM-RZ) 

R1 18 52 70 0.091 0.051 0.777 0.842 0.815 0.812 
R2 16 43 59 0.029 0.025 0.651 0.756 0.477 0.465 
R3 19 43 62 0.040 0.023 0.581 0.638 0.824 0.812 
R4 19 37 56 0.644 0.260 0.532 0.585 0.723 0.727 
R5 16 34 50 0.355 0.196 0.472 0.441 0.320 0.318 
R6 11 30 41 0.218 0.212 0.438 0.405 0.041 0.042 
R7 13 36 49 0.566 0.163 0.087 0.104 0.769 0.770 
R8 12 32 44 0.126 0.083 0.896 0.793 0.089 0.091 
R9 14 41 55 0.153 0.061 0.847 0.907 0.203 0.205 
RA 19 47 66 0.105 0.046 0.596 0.673 0.909 0.917 
IMERG-E 14 65 79 0.912 0.722 0.947 0.888 0.992 0.999 
IMERG-F 16 53 69 0.317 0.196 0.757 0.778 0.472 0.461  

Fig. 5. Comparison of (a) AUC and (b) minimum RD when antecedent precipitation (AP), satellite-based surface and root-zone soil moisture (CCI-SM and SM-RZ) 
were used as the third predictor in the logistic regression with the case wherein only ln(I) and ln(D) were used (reference case). I-E and I-F represent IMERG-E and 
IMERG-F, respectively. 

Table 5 
Statistical metrics during comparison of half-hourly rainfall depth measured by 
the different gauges and IMERG with the data recorded by gauge R2.  

Rainfall dataset CC MB/mm MAE/mm RMSE/mm 

R1 0.650 0.008 0.080 0.545 
R3 0.789 0.001 0.057 0.407 
R4 0.715 − 0.026 0.062 0.460 
R5 0.525 − 0.044 0.078 0.561 
R6 0.474 − 0.040 0.082 0.595 
R7 0.565 − 0.016 0.090 0.569 
R8 0.637 0.000 0.082 0.535 
R9 0.626 0.014 0.087 0.572 
RA 0.829 − 0.012 0.056 0.379 
IMERG-E 0.232 − 0.025 0.125 0.664 
IMERG-F 0.310 0.000 0.133 0.678  
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gauge is located farther than 10 km from the headwater region of a 
debris-flow basin, the IMERG-F is expected to provide better rainfall 
threshold estimates. This result is consistent with the work of Brunetti 
et al. (2018, 2021)), who reported that in comparison to satellite-based 
data with a spatial resolution of 10 km, gauge-based rainfall datasets are 
better at identifying landslide occurrences when they have an equivalent 
spatial resolution; the opposite is true when gauge-based data have a 
spatial resolutions of 25 km. However, concerning the complexity of 
rainfall field in mountainous regions, the distance obtained in this study 
is only valid for the study site and needs to be reassessed for other 
regions. 

5.2. Factors influencing the feasibility of CCI-SM in the threshold 
definition of debris flow 

Compared to using the AP, the use of the CCI-SM and SM-RZ for 
defining the threshold of debris flow was inferior for the study area. To 
investigate the reasons for this result, daily soil moisture and gauge- 
averaged rainfall depth from June to September in 2007 were 
analyzed as a case study, as illustrated in Fig. 7. The CCI-SM varied 
between 0.285 and 0.417 m3/m3, whereas the SM-RZ varied between 
0.335 and 0.380 m3/m3 during the investigation period. Overall, the 
CCI-SM was sensitive to rainfall; it decreased with no rain gaps and 
increased or stabilized during rainy days. However, the opposite was 
observed at times. For instance, the CCI-SM decreased by 0.042 m3/m3 

from July 24 to July 25, although the rainfall depth surpassed 30 mm on 
both the days, and it increased by 0.024 m3/m3 from August 5 to August 
6, although it did not rain on these two days. This was most likely 
induced by the measurement error in the CCI-SM, which has a typical 
value of 0.04 m3/m3 (Dorigo et al., 2017). Additionally, the thin near- 
surface layer of soil can be saturated by small rainfall events. Specif
ically, as shown in Fig. 8, the CCI-SM remained approximately 0.4 m3/ 
m3 when the rainfall depth accumulated within 24 h before soil moisture 
detection exceeded ~3 mm. Moreover, the pixel resolution of the CCI- 
SM (~25 km) was much coarser compared to the drainage area of the 
Jiangjia Gully (48.6 km2). Considering the significant spatial heteroge
neity of soil moisture in mountainous terrains induced by the spatial 
variability in soil texture, vegetation, topography, and meteorological 
factors (Li et al., 2022), a spatial-scale mismatch may generate a notable 
error. In addition, the temporal resolution of the CCI-SM (1 d) was 
coarse compared with the minimum time interval (6 h) used to separate 
the rainfall events in this study. For a given rainfall event, the available 
soil moisture might have been detected before an event that occurred 
prior to this event. In such a case, the available soil moisture tended to 
underestimate the initial soil wetness during this event. Fig. 7 reveals 
that the SM-RZ had the same tendency of change as CCI-SM, although it 
was not sensitive to random measurement errors in the CCI-SM. For 
instance, the decrease in the SM-RZ from July 24 to July 25 and the 
increase from August 5 to August 6 were <0.001 m3/m3. However, 
limitations in the spatiotemporal resolution remained. In addition, the 
change in the SM-RZ was small when the CCI-SM remained high. For 
instance, the increase in the SM-RZ was 0.014 m3/m3 during July 

Fig. 6. Scatter plots of Pearson's correlation coefficient (CC) between half- 
hourly rainfall depth of each pair of gauges versus the horizontal distance 
(HD) between the corresponding gauges, and scatter plots of CC between the 
half-hourly gauge-measured rainfall depth and IMERG-F data versus the HD 
between the corresponding gauge and center of the 0.1◦ × 0.1◦ grid cell used to 
extract the rainfall data in the IMERG-F. 

Fig. 7. Gauge-averaged daily rainfall depth, antecedent precipitation (AP), and satellite-based surface and root-zone soil moisture (CCI-SM and SM-RZ) during 
June–September in 2007. 

Fig. 8. Scatter plots of satellite-based surface soil moisture (CCI-SM) versus 
rainfall depth accumulated within the 24 h before soil moisture detection. 
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20–August 3, whereas the total rainfall depth was 143.2 mm in the 
corresponding period. This could make the SM-RZ insensitive to extreme 
rainfall events. These are likely the main reasons for the poorer per
formance of the SM-RZ compared with that of the AP. 

5.3. Uncertainties in the threshold determination 

The rapid rise of satellite rainfall products provide opportunities for 
researchers to access more available data to study the triggering con
ditions of rainfall-driven hazards. This study took advantage of these 
opportunities by comparing satellite-based rainfall thresholds with 
gauge-based thresholds for debris flow. However, uncertainties in the 
threshold determination were not considered during comparison. 
Firstly, uncertainties can stem from the division of rainfall time series 
into individual events. Generally, a minimum inter-event duration (tmin) 
was used to separate two contiguous rainfall events. For studying debris 
flow, values from 10 min (Coe et al., 2008) to 7 h (Jiang et al., 2021) 
have been used for tmin in the literature. Bel et al. (2017) showed that 
selecting tmin has a strong impact on the definition of rainfall threshold 
as it influences the event starting and ending time. In addition, un
certainties exist in the linear coefficients associated with logistic 
regression. For instance, the regression coefficients in Eq. (3) for the 
IMERG-F were α1 = 0.742 and α2 = 0.736, with a standard error of 0.346 
and 0.231, respectively. The resulting uncertainty in β was ±0.231/ 
0.742 (i.e. ±0.31). Furthermore, the optimal threshold may vary when 
the performance matric used for selection is changed. For instance, the 
optimal rainfall threshold derived from the IMERG-F would be I =
10.72D-0.99 if the Hanssen-Kuiper skill score, which is defined as the 
difference between POD and POFD, is maximized. Thus, further research 
is needed to comprehensively estimate the uncertainties in the rainfall 
threshold to achieve a more rigorous evaluation of the feasibility of 
satellite rainfall products in defining the triggering conditions of debris 
flow. 

6. Conclusion 

In this study, using the IMERG-E, IMERG-F and CCI-SM, we evalu
ated the feasibility of satellite-based precipitation and soil moisture data 
for determining the thresholds for triggering debris flow at the local 
scale. The rainfall properties of DFs derived from different rain gauges 
and satellite estimates exhibited great variability, resulting in consid
erable differences in the I-D thresholds. Overall, the thresholds defined 
from the gauge data measured in the initiation zone of debris flow 
performed better than those defined from the data recorded in other 
parts of the watershed. This was primarily because more DFs were 
detected. The I-D threshold determined by the IMERG-E deviated from 
the gauge-based thresholds. Although the threshold derived from the 
IMERG-F was comparable to the gauge-based ones, the presence of 
substantial FN and FP indicated that performance of the IMERG-F was 
weaker. Therefore, rain gauge measurements are preferred for deter
mining threshold in gauged watersheds. For ungauged watersheds, the 
IMERG-F is suitable when the nearest available gauge is farther than 10 
km from the initiation zone of the debris flow. Because debris-flow 
occurrence is partly attributed to the triggering of landslides in the 
study basin, the initial soil wetness status is expected to impact the 
rainfall conditions for debris-flow triggering. We found that the per
formance of the thresholds improved when the AP was included in the 
threshold definition. Adding the CCI-SM to the threshold definition had 
little impact on the performance of the thresholds because of measure
ment error, ease of saturation, and relatively coarse spatiotemporal 
resolutions. The spatial variabilities in rainfall and soil wetness are 
commonly large in debris-flow-prone regions with complex topography. 
Therefore, these results are only valid for the study catchment and still 
need to be validated or assessed for other catchments or regions. In 
addition, various downscaling techniques have been studied for satellite 
soil moisture products during recent decades. These techniques provide 

a solution to the aforementioned resolution issue. Further research is 
needed to assess the feasibility using these techniques to obtain satellite- 
based soil moisture data to determine the triggering conditions for 
debris flow. 
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