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s u m m a r y

Debris flows (especially those of high-density or high viscosity) usually appear in the form of surge
sequence. Each debris flow event consists of tens or hundreds of surges. A debris flow is thus equal to
a surge series which is expected to feature the intrinsic properties. Statistics of observation data indicates
that different events have the similar distributions in parameters such as velocity, flow depth, discharge,
runoff, and time interval, which can be considered as the signs of an underlying dynamics. But there are
currently difficulties in extracting the dynamics from the surge series. This paper is concerned with the
temporal variations of surge series based on observation data in the last forty years in Jiangjia Gully (JJG).
The temporal process of a surge series is characterized by the accumulative curve of the interval time. A
surge series is found to be dominated by the peak discharge in that the peak discharge determines the
exponent of the distribution. Moreover, the average discharge evolves with surge progress and finally
decays in a power-law form. It follows that a surge series behaves as a whole which requires a unified
dynamical framework to encompass all the appearances.

� 2008 Elsevier B.V. All rights reserved.
Introduction

Debris flow differs much from the relevant phenomena such as
landslides, rockfalls, and fluvial sediment transport in that it moves
in the form of surge. A surge is a wave-like locomotion of high-den-
sity liquid which is restricted to a certain volume and spatial shape.
Surges appear commonly in gravity currents (Simpson, 1997) of
which debris flow has been identified as a special case (Takahashi,
1981). Debris flow surge has been long known since its first recog-
nition over a hundred years ago (Conway, 1893; Pack, 1923; Sharp,
1942) and ubiquitous all over the world (Sharp and Nobles, 1953;
Pierson, 1980, 1986; Takahashi, 1991; Major, 1997; Saucedo et al.,
2005). As observed in Jiagjia Gully (JJG), a famous debris flow valley
in the southwest of China, debris flow comes about in successive
surges. Each debris flow event consists of tens or hundreds of
surges. The surge is practically the elementary unit of debris flow
(Wu and Kang, 1993; Li et al., 2004; Ni and Lu, 2005). Many mech-
anisms may operate in producing surge waves, such as instability
of fluid, structure of debris flow, kinetic wave or roll wave (Weir,
1982; Chiu-On Ng and Chiang, 1993; Wan and Wang, 1994; Hungr,
2000). ‘‘However, observations indicate that successive surges are
usually in different densities and materials, so they are unlikely
to emerge from a single source. More importantly, there is no
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mechanism that has ever been proposed to account for the proper-
ties of the surge sequence as a whole.

It is nature to treat the surge sequence as a time series. Then
here arises the question as to whether the series is deterministic
or stochastic. If it is stochastic, a debris flow is simply a group of
random surges; if it is deterministic, however, there must be a
dynamics underlying the observed phenomena and the debris flow
can be treated as a nonlinear system. The most conspicuous sign of
nonlinear dynamics is the attractor reconstructed from the time
series (Abarbanel et al., 1993; Broomhead and King, 1986; Eck-
mann and Ruelle, 1992; Takens, 1981). The fractal dimension of
the attractor is calculated by the Grassberg–Procaccia algorithm
(Grassberg and Procaccia, 1983). But this usually requires a long,
noiseless, and stationary data set (Maurer et al., 1997). And the
surge series, at most several hundreds in length, is usually not long
enough to feed the algorithm (Smith, 1988; Eckmann and Ruelle,
1992), let alone the uncertain noises due to environment. To our
knowledge, there seems no practical method to tackle this
situation.

Although it is hard to extract the dynamics directly from the
surge series, there are evidences mounting to support a dynamical
perspective. First, debris flow may inherit the dynamic features in
its origin from the soil failures on slopes and its extension in the
network of tributary channels (Li et al., 2008) because the failure
is generally believed having the nature of self-organized criticality
(SOC) (Turcotte, 1997, 1999; Malamud et al., 2004) and the channel
network forming a self-similar structure (Rodriguz-Iturbe and
Rinaldo, 1997). Secondly, there are many results derived from
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observation data hinting at a possible underlying system, such as
the long-term dependence, the frequency–magnitude relationship,
and the parameter distributions which can be generally fitted by
the Weibull distribution or even more general distributional func-
tion involving power and exponential components (Li et al., 2002,
2004, 2007). Such distribution is supposed to be universally appli-
cable to interevent time statistics in the same way that power-law
distributions are applicable to frequency–magnitude statistics
(Yakovlev et al., 2006; Turcotte et al., 2007). Alternatively, the
underlying dynamics may constitute both deterministic and sto-
chastic components, for which will develop different prediction
strategies (Hallerberg et al., 2007). The present study is contributed
to build the integrity feature of the surge series in terms of the
temporal variations of the discharges within an event. An average
analysis is introduced to reveal the decaying of the discharge dur-
ing the course and the integrity of the series.

Distribution properties of surges

Living debris flow is rarely seen in field. But it is fortunate that
the Jiangjia Gully (JJG) in the southwest of China has provided an
ideal spot for real-time monitoring of debris flow (e.g., Li et al.,
Fig. 1. Debris flow in JJG, observed at the
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Fig. 2. A surge series of debris fl
1983, 2003, 2004; Davies, 1986, 1990; Davies et al., 1991, 1992;
Chen et al., 2005; Cui et al., 2005). Every year witnesses a dozen
of events on average and each event consists of tens or hundreds
of surges. Since its establishment in 1960s, the Dongchuan Station
of Debris Flow Observation and Research, Chinese Academy of Sci-
ence, has achieved a relatively complete database which includes
more than 400 debris flows (e.g., Li et al., 2004; Cui et al., 2005;
Liu et al., 2008; Kang et al., 2006).

JJG is 48.1 km2 in area, a rather large valley regarding debris
flow. In such a gully, debris flow is by no means a full-valley pro-
cess; rather, every surge originates in some special tributaries
and finally converges into the downstream channel. Surges are
measured at the fixed sections in the mainstream channel in the
lower part, as indicated by the black triangle in Fig. 1 (Li et al.,
2004). The discharge of a surge is estimated by the product of
the flow velocity between the fixed sections and the average sec-
tion area (e.g., Kang et al., 2006). The temporal interval between
successive surges ranges from tens to hundreds of seconds. Corre-
sponding to the time t1, t2, . . . , tn, at which the surge front passes the
section, a debris flow is constituted by the time series: X1,X2, . . . ,Xn,
where X denotes one of the measured parameters, such as dis-
charge Q, velocity V, and interval s, and so on (Fig. 2).
delta point of the Dongchuan Station.
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It is notable that the series for different parameters are subject
to an exponential family of distributions, special cases of which are
Gamma and Weibull distributions (Kalbfleisch and Prentice, 1980).
Such distributions share the scaling invariance in that if two
parameters are related by a power-law, they would have the same
distribution. One example is the similarity between distributions
of flow depth and velocity. It has been also found that the plani-
metric factors of the valley (e.g., drainage area, relief, slope, and
mainstream length) satisfy the same distribution (Li et al., 2002).
Exploring the implications of the similarity in distributions of
parameters and valley factors should provide an insight into the
probabilistic perspective of debris flow and it might be as well
an interesting topic for the future. Particularly, it is expected that
the power-law relations may play the same role in a physical mod-
el of debris flow as in the models of flood.

Apart from these numerical results, qualitative properties have
been found in the series which differ in many ways from the sto-
chastic events and share the features that have been recognized
as nonlinear dynamics (e.g., rainfall series, earthquake series, vol-
canic eruption series, and so forth) (Li et al., 2004). However, there
remain major difficulties in applying the existing nonlinear
dynamical methods to the measured time series (e.g., Maurer
et al., 1997; Schreiber, 1999). In the following, instead of direct
extracting the dynamics, discussion is focused on the tangible
properties of the surge series in terms of the intermittence and
the discharge variation, which are the most representative of the
tempo-spatial properties of debris flow.
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Fig. 4. Comparison of the distributions.
Temporal intermittence of the surge series

The most conspicuous of surge series is the intermittence. Inter-
vals between surges rang from tens to hundreds of seconds. And
the high fluctuation of discharge shown by Fig. 2 can be ascribed
to the fact that the surges are coming from different tributaries
and undergoing different processes. It is of special interest to note
the intermediate flows of small discharges. They are usually of low
density (e.g., between 1.3 and 1.6 g/cm3) and actually not typical
debris flow in nature. However, from the viewpoint of time series,
they are indispensable for constituting a complete data set. In
other words, an event of debris flow should be identified as a series
of flows in various properties, instead of only a group of high-den-
sity surges.

The emergence of the temporally separated flow implies that a
debris flow surge has its own origin independent on the flood flow;
otherwise the flood surges should have picked up the sediment and
turned into typical debris flow surges. Therefore, debris flow is a
mass flow in its own way (e.g., as mentioned above, from the slope
failure to the channel flow), which would come about only when
the mass is ready to move. At this point, rainstorm is perhaps over-
estimated as to make up a debris flow; here one sees that it is more
stimulative than decisive. The intermittence of surge is in many
ways similar to a variety of intermittent phenomena in nonlinear
dynamics (Li, 2004). Although the dynamics is unknown, the inter-
mittence might have shed a light on the origin of the surge.

A possible way to explore the mechanism of the surge is to look
at the distribution of the intervals. For example, the exponential
distribution is often the sign for the Poisson process, which means
that the events occur continuously and independently of one an-
other. For the case of surge series, statistics shows that the proba-
bility distribution is not exponential, but rather has a peak at the
small interval (100 s or so). In other words, the successive surges
are far away from the origin of Poisson process. Several probability
distributions are possible to fit the observation data, such as the
Weibull, Lognormal, and the generalized extreme value distribu-
tion (GED). Calculation shows that the GED fits the best (Fig. 3).
Fig. 4 displays the comparison between GED and Lognormal distri-
bution. In terms of Log likelihood, GED is generally several orders
of magnitude higher than the Lognormal distribution.

The importance of GED relies in the fact that it is the limit dis-
tribution of the maxima of a sequence of independent and identi-
cally distributed random variables. Then there is a natural
interpretation for GED: the interval is the waiting time for the next
surge to come from the processes such as soil failures and land-
slides on slopes; and each interval can be regarded as the maximal
time duration for these pregnant processes.

On the other hand, the accumulative of the intervals, i.e. the ser-
ies of occurring time (as observed a the fixed section), t1, t2, . . . , tN,
exhibits another aspect of the temporal feature. These discrete
time points can be considered as the measured values of a contin-
uous function (curve). Four types of processes are identified, as
represented in Fig. 5, where the unit of time is formalized by the
last time tN (i.e. let tN = 1 for each sequence, with N being the total
number of surges).

Types C and D are so simple that they can be fit by exponential
and linear function, respectively. When considering types C and D
as the elementary processes, the types A and B should be combina-
tive ones. In general, slope of the curve describes the rate of the
surge production. Since the surges originate from different slopes
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Table 1
The exponents and related parameters for the distribution of surge discharges.

Event k Qmax (m3/s) hQi (m3/s) R2

660627 2.3866 2391 351.5 0.9940
660628 11.991 399.3 133.7 0.9617
670731 2.7761 1558.9 618.8 0.9443
750810 13.394 413.6 106.5 0.9454
820611 2.5394 1673 664.3 0.9399
870823 9.6102 728.9 88 0.9840
880703 4.694 818.1 263.5 0.9516
890627 3.7053 1050 205 0.9783
890727 5.3131 740.9 128.6 0.9817
890802 19.994 238.2 67.2 0.9832
900620 14.748 467.8 92 0.9852
907018 8.4334 626.3 149.4 0.9908
900729 9.4948 397.4 135.25 0.9535
910708 6.4405 754 166.4 0.9350
910717 4.1897 1319.4 175.2 0.9677
910813 7.7798 801.4 158.5 0.9842
920617 5.2599 826.5 227.2 0.9718
920717 3.127 1053 240.6 0.9718
930826 7.3478 571.9 146.5 0.9837
940616 4.1613 1382.5 459.8 0.986
940625 2.4048 2027.8 459.8 0.9840
940702 6.3812 929.2 223.65 0.9783
980709 1.3577 2913.9 960.6 0.9202
990810 7.1263 756.8 221.6 0.906
990818 5.9418 1060 224.46 0.9948
990825 3.5604 1350 355.4 0.9679
00809 4.284 1133.1 269.3 0.9896
010704 8.5645 497.7 221.6 0.9060
010805 6.3497 747 201 0.9606
010822 3.8273 1278.9 350.2 0.9372
020718 4.3628 856.8 191.2 0.9242
020820 4.9119 863.2 338.1 0.8801
030611 3.0968 1425.1 489.1 0.9700
030726 4.1418 1240.6 325 0.8586
040731 13.577 279.8 73 0.9679
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Fig. 6. Distribution of surge discharges.
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and tributaries and involve different processes, it is interesting to
link the time curves with the possible routes of the surges. This re-
quires a complete scenario of a surge from origination to the reach
of observation.

Temporal variation of discharge

Discharge distribution

Discussions above suggest there should be a dynamics to de-
scribe all the presented phenomena. Although the dynamics
underlying the surges is unknown yet, there are tangible properties
that specify the integrity of surge series. It has been found that the
discharges, although fluctuate strongly, share the same accumula-
tive distribution (Liu et al., 2008). That is, the percentage of surges
with discharge bigger than a given value Q is well featured by the
exponential function

PðQÞ � expð�kQÞ ð1Þ

where k is the exponent, and the coefficient of the exponent func-
tion is omitted which matters little for our discussion. Statistics of
thirty events are listed in Table 1, in which the maximal and aver-
age discharge of each event is also listed. Fig. 6 displays three of the
fitted curves.

Actually, Eq. (1) provides a magnitude-frequency relationship,
which can be further considered as playing the same role as the
Gutenberg–Richter law in earthquake (Turcotte, 1997) that has
been recognized as SOC (Bak and Tang, 1989; Bhattacharya and
Manna, 2007).

In Table 1 the biggest exponent appears notably at the lowest
peak discharge (i.e. event 8908021) and the smallest exponent at
the highest one (event 980709). In deed, statistics on the data does
yield a power-law relationship between the exponent k and the
peak discharge Qmax

k � Q�b
max ð2Þ

with b = 0.9821 (Fig. 7).
Then, normalizing the discharge for each surge sequence by

Qmax, i.e. let Q* = Q/Qmax, Eq. (1) can be rewritten as

PðQ �Þ � expð�k�Q �Þ ð3Þ

with exponent

k� � Q 1�b
max ð4Þ
Substituting the value of exponent b, k� ¼ Q 0: 0179
max . The small

exponent here makes the k* value much less variable. For instance,
there is a wide gap in exponent value between events 890802 and
940625 (see Table 1), but their k* values are nearly the same: 4.69
and 4.82, respectively. The little variation of the exponent for the
rescaled discharge implies the universal significance of peak dis-
charge in debris flow event.

Decaying of the surge series

The peak discharge is also found to dominate the surge
progress. Define a time-dependent average of discharge (for
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Table 2
Exponents of averaged discharge decaying.

Event Surge number Qmax (m3/s) Decaying exponent

890802 127 238.2 0.5584
940625 107 2027.8 0.7481
870823 180 728.9 0.2056
020815 90 629.8 0.2773
980709 88 2913.9 0.7558
000809 63 1133.1 0.4544
010822 161 1278.9 0.4959
990825 83 1350 0.5413
040721 79 684 0.6445
030611 60 1425.1 0.2827
990810 68 756.8 0.4343
990818 78 1060 0.4213
980716 74 945 0.6217
010704 73 497.7 0.5081
020718 61 856.8 0.6633
020816 77 863.2 0.5917
030726 53 1240.6 0.7840
880703 105 818.1 0.4037

326 J. Liu et al. / Journal of Hydrology 365 (2009) 322–328
convenience, the normalized discharge Q* is used hereinafter, with
the asterisk omitted)

hQin ¼ ðQ1þ Q2þ � � � þ QnÞ=n ð5Þ

It is found that hQin is exclusively inclined to decrease after
some surge number (Fig. 8). Despite the abrupt rising in the early
episode, hQin finally decays in a power-law form

hQin � n�a ð6Þ

where the exponent a ranges between 0.20 and 0.80 or so (Table 2).
This differs much from the random data in which the averaging
curve sways around the average value of the total set of data.

To see the domination of Qmax in this situation, note that the
maximal decaying exponents emerge at the events with the high-
est peak discharges. Specifically, consider three series 890802 (A)
and 940625 (B), which have the similar appearance of discharge
fluctuation (Fig. 9) but distinctive peak discharge, and series
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Fig. 8. Averaged discharge decaying with surge number.
870823 (C), which is relatively long (180 surges involved) and
has a moderate peak discharge (Table 1). Fig. 10 presents the
decaying curves. One sees that A and B are similar in averaged dis-
charge curve, but B, with the higher Qmax, falls more steeply. Gen-
erally speaking, for series of the similar length, the lower the peak
discharge, the more steady the process. As for the longer series
870823, it has a long decaying tail, which rightly responds to the
persistence of the series. However, it is not clear whether there is
a specific relation between the peak discharge and the surge num-
ber. A unified theoretic framework is wanted to account for the
persisting and decaying of the surge series.

Dynamical implications

Two facts here are especially remarkable that concern with the
systematic properties underlying the series. First, hQin <0.5 is satis-
fied for almost all the series. This means most surges are in small
discharges, thus the peak discharge Qmax appear more significantly
conspicuous in a series. A series turns out to be a group of dwarf
surges dominated by several giant surges. Taking Qmax as the rep-
resentative magnitude of the series, it is found that the magnitude-
frequency relation at event scale is the power-law (Liu et al., 2008).
Moreover, the intervals between ‘‘giant” surges (e.g., surges with
discharge beyond half the average) turn out to have a power-law
distribution. The emergence of power-law out of the ‘‘filtered” ser-
ies reveals the SOC nature, which might be disturbed by noise of
those small surges. Then the domination effect of the peak dis-
charge has its origin from the SOC background signed by the
power-laws.

Secondly, no series has ever been observed to have a rising aver-
aged discharge similar to the early part of the surge series. This
means that any event that occurs, no matter how short it might
be, is a complete series that always present the same decaying
trend. In other words, a series appears as a whole; there is no deb-
ris flow in nature that is ‘‘uncompleted” or ‘‘suspended”. The integ-
rity of the series may enforce the assertion that, although there has
been not so far a dynamics extracted from the surge series, it is
compelling to consider these phenomena under a framework of
system dynamics.

Conclusions and discussion

Temporal variations of debris flow are discussed in terms of
surge series based on observation data. Firstly, the discharges in
a surge series are found to have an accumulative distribution in
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thr form of exponential function, with exponents varying with the
peak discharge in a power-law form. This suggests the dominant
role of the peak discharge in the surge progress. Secondly, the aver-
aged discharge varies with the progress of the series and finally de-
cays in a power-law form. It follows that a debris flow as a whole is
a sequence of various surges dominated by the peak discharge.
These findings represent the intrinsic feature of debris flow. Be-
cause the data come from the same valley and the surges in a se-
quence are under the same circumstances, the variations
involved should be dynamically determined but not dependent
on the external influences. Therefore, the characteristics presented
here might be of universal importance for debris flows in whatever
environmental conditions.

Furthermore, it is suggested that the domination effect of the
peak discharge has the origin from the SOC background associated
with landslides and slope failures; and these prosseses in turn are
precisely the origins of a debris flow surge. Therefore, debris flow
through the surge series finds an access to the system dynamics.
Although there has not been so far any dynamics extracted from
the surge series, evidences reported here are supporting a dynam-
ical perspective.
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