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A B S T R A C T   

Many debris flows originate from shallow slope failures over the source area of valley and move in form of 
successive surges. In order to understand the behavior of such failures, we conducted seven sets of experiments of 
rainfall-induced soil failures in a 4 × 8 m spot on a slope under different rainfall intensities ranging from 12 to 
60 mm/h, according to the local rainfall conditions in the valley of Jiangjia Gully, and this work is based on the 
experimental data. It is found that the failures are realization of a Poisson process with failure volume satisfying 
the Pareto distribution, thus the failure process can be simulated using a combinative Pareto-Poisson process 
(PPP) model. The PPP model incorporates a Poisson process determining the failure time, and a Pareto distri
bution characterizing the fluctuation of failure volume. The developing course of a debris flow surge is reduced 
to the hierarchic evolution of the failures from their source to the mainstream, which amounts to a cascade 
thinning process of the Poisson sequence in the PPP model framework. Given the controlling parameters (i.e., the 
Poisson intensity, Pareto distribution parameters, and thinning ratio), the model is capable of predicting surge 
sequences that agree well with the monitored surges in terms of time interval, magnitude fluctuation, and 
probability distribution. This study represents the first attempt to formulate a stochastic framework for debris 
flows developing from source to mainstream, which applies to debris flows fed by discontinuous material sup
plies from shallow slope failures.   

1. Introduction 

The phenomenon of surge waves is ubiquitous in debris flows 
throughout the world (Suwa et al., 1997; Berti et al., 1999; Rickenmann 
and Weber, 2000; Marchi et al., 2002). Such surges can originate owing 
to geomorphologic complexity (Coe et al., 2008; Theule et al., 2012; 
Kean et al., 2013), source distribution (Takahashi, 2014), grain size 
segregation (Gray and Ancey, 2009), and flow instability (Ng and Mei, 
1994; Iverson and Denlinger, 2001; Arai et al., 2013). Because most 
surges occur in stream channels with gentle slope (~3◦–10◦), move 
slowly (<5.0 m/s), and have a low Froude number (Fr) (e.g., <2/3), 
their occurrence cannot be generally ascribed to flow instability, which 
has impact only under the conditions of steep slope and high Fr (e.g., ≥1) 
(Carasso and Shen, 1977; Zanuttigh and Lamberti, 2007). 

Despite the various potential origins of material in debris flows, e.g., 
from mobilization of streambed sediment, transition of large landslides, 

or small slope failures, a common feature is that the material supply is 
random and discontinuous (Iverson et al., 1997; Hungr et al., 2014; 
Thouret et al., 2020; Guo et al., 2013, 2020). Many studies have 
investigated the source identification (e.g., Benda et al., 2003; Takaha
shi, 2014), soil–flow transition (Iverson et al., 1997, 2000; Wang and 
Sassa, 2001, 2003), substrate sediment initiation (Takahashi, 1978; 
Gregoretti, 2000; Gregoretti and Fontana, 2008), and dynamics of debris 
flows (e.g., Savage and Hutter, 1991; Iverson, and Denlinger., R. P., 
2001; Blatz et al., 2004; Collins and Znidarcic, 2004; Iverson and 
George, 2014); however, an integrated scenario of debris flow devel
opment from source to the mainstream remains lacking. 

Here, we propose a stochastic scenario of surge developing from 
discontinuous shallow slope failures based on our field experiments and 
observations conducted in Jiangjia Gully (JJG) (Guo et al., 2021), which 
is a well-known debris flow watershed in southwestern China. First, we 
identify the shallow slope failures as a spatial Poisson process with 
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magnitude satisfying the Pareto distribution (i.e., the power law in 
general). Then, we formulate a combinative model incorporating the 
Poisson and Pareto elements to produce the failure sequence over the 
source area, and simulate surges by thinning the sequences from initial 
failure to the mainstream channel. The resultant surge sequence proves 
consistent with observational data. The developed model is the first in 
the study of debris flow that has capability of predicting the spatio
temporal characteristics (e.g., the magnitude fluctuation and the prob
ability distribution) of surges, and the proposed scenario provides new 
insight into the formation and variation of debris flows originating from 
discrete shallow slope failures over a wide source area. 

2. Spatiotemporal characteristics of debris flow surges in JJG 

2.1. Background of JJG and debris flows 

Debris flows in JJG are remarkable for their variety, and each debris 
flow event can contain tens or hundreds of surges distinct in material 
composition and flow regime, with peak discharge fluctuating in the 
range of 10–2500 m3/s (Liu et al., 2009; Li et al., 2012; Guo et al., 2020; 
Zhang et al., 2021). Long-term observations carried out by the Dong
chuan Debris Flow Observation and Research Station (DDFORS), Chi
nese Academy of Sciences, since the 1960s, have achieved a dataset of 
approximately 10,000 surges in 500 events (Cui et al., 2005; Guo et al., 
2020). In recent years, Surges in JJG are typically viscous and originate 
from shallow failures of the colluvium slopes (< 5 m, about 30◦– 40◦) in 
the source area (e.g., Guo et al., 2013) (Fig. 1). In the preceding paper, 
we’ve reported the results of a group of experiments in a 4 × 8 m spot on 
a slope under different rainfall intensities ranging from 12 to 60 mm/h, 
according to the local rainfall conditions, which provided illustration of 

how the failures develop into intermittent surges (Guo et al., 2021); and 
the present work makes an attempt to formulate a quantitative frame
work accounting for the failure-developed debris flow, based on the 
spatiotemporal features of the failures. 

2.2. Spatiotemporal features of surge sequences 

Each debris flow event in JJG consists of a surge sequence. Despite 
the high variability of individual surges, the entire sequence appears to 
share several remarkable properties pertaining to the mechanism of 
surge formation.  

1) Magnitude fluctuation 

Surges cover a wide spectrum from hyperconcentrated flow to 
viscous flow, with varying velocity (0.1–15 m/s), discharge (100–103 

m3/s), and density (1.30–2.40 g/cm3) (Fig. 2). The fluctuation differs 
remarkably from roll waves, where flow instabilities produce waves 
with increasing period and amplitude, and the first surge usually has the 
greatest depth and the longest duration (Zanuttigh and Lamberti, 2007).  

2) Probability distribution 

The discharge and velocity of a surge satisfy the family of expo
nential distributions, e.g., the exponential and Weibull distributions (Liu 
et al., 2008; Li et al., 2012), indicating that the majority of surges have 
discharge and velocity below the average. In particular, most surges 
have a low value of Froude number, Fr (e.g., <2/3), implying that they 
cannot have derived from instability, which usually occurs at higher 
values of Fr (Arai et al., 2013; Barker et al., 2017; Viroulet et al., 2018; 

Fig. 1. Sources of debris flows in Jiangjia Gully (JJG): (a) the JJG watershed, (b) and (c) rainfall records at different gauges, (d) source slope, (e) experimental spot 
on a slope, and (f) successive surges in the mainstream channel. DDFORS: Dongchuan Debris Flow Observation and Research Station. 
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Razis et al., 2019).  

3) Temporal intermittency 

Surges are separated at time intervals of the order of approximately 
100 s, following the exponential distribution. Observation indicates that 
the time interval decreases exponentially with flow density. This is un
derstandable because high rainfall intensity causes high frequency 
(short intervals) and large number of failures, leading to rapid supply of 
mass that in turn results in surges of high density in short intervals. Thus, 
the temporal characteristics of surges are well associated with mass 
supply and present randomness in terms of sediment transport (e.g., 
Benda and Dunne, 1997). 

In the following, we formulate a scenario to incorporate all the 
phenomena based on observations and field experiments. 

3. Pareto–Poisson process of slope failures 

3.1. Observation of field experiments on soil failures of source slopes 

We conducted seven sets of experiments of rainfall-induced shallow 
soil failures in a 4 × 8 m spot on a slope in JJG under different rainfall 

Fig. 2. Fluctuation of surges in a debris flow event, showing the high vari
ability of flow density (ρ), velocity (v), discharge (Q), and time interval (t). N in 
horizontal axial is the surge sequence. 

Fig. 3. Failure sequences on the test spot of a slope in JJG under different rainfall intensities.  
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intensities, IR, which was set as 12, 18, 27, 36, 45, 54, and 60 mm/h, 
according to the local rainfall conditions (Guo et al., 2013). Here “fail
ure” is used as a general term including various shallow soil movements 
and their detached soil bodies (e.g., Varnes, 1978; Hungr et al., 2014). 
The rainfall duration and running time of each experiment was 40 min, 
after which the failures stopped and the slope resumed a state of repose. 
The failure time, location and volume are recorded in a coordinate of 
cell grids of the slope, by both directly reading snapshots and combining 
field observation. The experiments display a sequence of slope failures 
and the subsequent flows formed by the failures into the channel. The 
resultant failure sequences are shown in Fig. 3, and the parameters and 
quantities considered are summarized in Table 1 (for details of the ex
periments, see Guo et al. (2021). 

3.2. Statistical features of the failure sequences 

The failure sequences exhibit several fundamental statistical 
features.  

1) Power law distribution of failure volume (magnitude) 

Failure volume (M; unit: 10− 3 m3) fluctuates by up to three orders of 
magnitude, i.e., in the range of ~5–800 10− 3 m3, and presents a power 
law distribution (Guo et al., 2021): 

P(〉M) = P(M, β) = KMM− β (1)  

where P(>M) is the fraction of failures greater than M. KM is the coef
ficient, and β is the exponent. The power law occurs universally in 
catastrophic events, especially landslides over large areas (e.g., Guzzetti 
et al., 2002; Marchi and D’Agostino, 2004; Malamud et al., 2004; Hungr 
et al., 2008; Jakob and Friele, 2010). The occurrence of the power law 
here implies that the failures represent an intrinsically random process.  

2) Exponential distribution of time interval 

The time interval between failures is in the range of 10–180 s (on 
average of 20 s), and presents an exponential distribution (Guo et al., 
2021): 

P(〉T) = CT exp( − λT), (2)  

where P(>T) is the time interval longer than T. CT is the coefficient, and 
λ is the exponent. The parameters of Eqs. 1 and 2 are listed in Table 2.  

3) Parameters in relation to rainfall intensity 

The parameters above are related to the rainfall intensity governing 
the experiments: 

X = CX exp.(kXIR) (3)  

where the subscript X denotes the involved parameters, i.e., represent
ing coefficients in relationship of failure number (N), time interval (T), 

interval distribution (λ), failure volume (M), and volume distribution 
(β). CX and kX are the coefficient the exponent, respectively (Table 3). 

Eq. (4) provides a wealth of information concerning the effects of 
rainfall intensity on such slope failure. As rainfall intensity (IR) rises, the 
failure number (Nc), frequency (1/Tm or λ), mean volume (Mc), and total 
quantity (Mt) all increase exponentially (Guo et al., 2021). Thus, Eq. 4 
provides an estimate of the mass supplied by such failures: 

Mt = NcMc = CNCMexp((kM+ kN)IR ) ∼ exp(0.044IR), (4)  

which is well confirmed by experiment. Therefore, rainfall intensity 
imposes a nonlinear effect on the mass supplied to debris flows. 

High rainfall intensity causes a high concentration of mass supply, 
leading to high-density surges with short intervals, as mentioned above. 
Thus, a failure sequence provides quantitative hints regarding the 
surges, and finding the link between them was the object of this study. 

3.3. Identifying the stochastic process of slope failure 

3.3.1. Statistical test of the failure sequences 
The failure sequences (Fig. 3) can be expressed as time series in terms 

of failure volume: 

{S0} =
{

MT(i) |i = 0, 1, 2,…..N
}
, (5)  

where MT(i) is the failure occurring at time T(i), and N is the number of 
failures; and the time interval ΔTi = Ti − Ti− 1 satisfies the exponential 
distribution. 

To recognize the nature of the sequence, we must first check the 
stationarity and randomness. The Mann–Kendall test (Hamed and Rao, 
1998) indicates that the sequences have no significant trend, and the 
nonparametric run test (i.e., the Wald–Wolfowitz test) (Alhakim and 
Hooper, 2008) finds they are random at the 95% confidence level. 
Therefore, the sequence can be considered random and stationary, and 
the exponential distribution can be further established by passing 
traditional tests such as the χ2 and Kolmogorov goodness-of-fit tests 
(Clauset et al., 2007), which confirm the goodness-of-fit at the 0.05 
significance level. Then, the exponential distribution of the time inter
val, as a sufficient and necessary condition, indicates that the failure 
sequence results from a Poisson process (Lari et al., 2014; Krishnan, 
2015). 

The Poisson process is the simplest and most random way of 
describing certain events in the sense that a process is almost inevitably 
a Poisson process only if the individual events are independent (e.g., 
Kingman, 1992; Straub and Schubert, 2008). Failures scattered on a 
slope can be considered statistically independent in both space and time. 
Equivalent to the exponential distribution of the time interval, the 
probability of n failures occurring within interval t follows the Poisson 
distribution: 

Prob{N(t) = n } = pn(λt) =
(λt)n

n!
e− λt, (6) 

The parameter λ is the reciprocal of the expected interval Tm 
(Table 1); hence, it reflects the average number of events occurring 
within unit time. In this sense, λ represents the intensity of the process. 

The failure number is N = λT, with T being the duration. Because λ is 

Table 1 
Summary of soil failures on the source slope under different rainfall conditions.  

No. IR NC T0 Tm Tmax Mmax MT Mc 

J-1 12 93 – 25.54 111 30 998 11.47 
J-2 18 92 – 25.83 95 100 1173 12.61 
J-3 27 87 35min08s 27.14 129 200 1395 15.16 
J-4 36 97 17min51s 24.47 175 500 2305 23.76 
J-5 45 141 10min16s 16.8 61 500 3846 27.28 
J-6 54 152 10min04s 15.79 51 800 5001 32.9 
J-7 60 222 7min36s 10.27 58 1000 5928 26.7 

Note: IR: rainfall intensity (mm/h); NC: failure number; T0: occurrence of first 
failure; Tm: mean interval (s); Tmax: longest interval (s); Mmax: maximal failure 
size (10− 3 m3); Mc: mean failure size (10− 3 m3); MT: total failure size (10− 3 m3). 

Table 2 
Parameters of the distributions for failure magnitude and time interval.  

Experiments IR (mm/h) KM β T (s) λ 

J-1 12 8.22 1.2657 25.54 0.0391 
J-2 18 8.80 1.2590 25.83 0.0387 
J-3 25 8.08 1.1940 27.14 0.0368 
J-4 36 7.23 1.0580 24.47 0.0409 
J-5 45 8.05 1.0620 16.8 0.0595 
J-6 54 7.59 1.0191 15.79 0.0633 
J-7 60 6.50 1.0470 10.27 0.0970  
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derived from the time interval and is statistically independent of the 
failure number, the linear N–T relationship (Fig. 4) provides convincing 
evidence of the Poisson process. 

3.3.2. Slope failure as a Pareto–Poisson process (PPP) 
The distributions of the time interval and failure volume (Eqs. 1 and 

2) determine a failure sequence. As the power law is not really a prob
ability density function, a truncated form obtained through normaliza
tion is often used instead (e.g., Newman, 2005): 

p(x) =
α − 1

m0

(
x

m0

)− α

, (7)  

which is the Pareto distribution that describes the statistics of observed 
data surpassing a certain threshold value (Embrechts et al., 1997). Here, 
m0 is the scale parameter defining the threshold, and α is the shape 
parameter describing the “long tail” of the distribution. Therefore, the 
failure sequence can be expressed as follows: 

{S0} =
{

MT(i) |T(i) = Poisson(λ) ;Mi = Power(αm0)
}
, (8) 

This means that the Poisson parameter determines when a failure 
occurs, and that the Pareto parameter determines how the volume 
varies. The parameters relevant to our experiments are listed in Table 4. 

The Pareto exponent α is also related to rainfall intensity: 

α = CPexp( − kPIR), (9)  

where CP = 2.21 and kP = 0.004 (R2 = 0.80). 
The value of m0 falls into two groups: ~5.05 for low IR and 5.21 for 

high IR, which makes a considerable difference between failures under 
low and high rainfall intensity. It should be noted that the median failure 
volume (m1/2), which divides the distribution into two equal halves, is. 

M1/2 = 21/(α− 1)m0, (10) 

Then, the fraction of larger failures (i.e., at the right-hand half) is. 

R =
(
m1/2

/
m0

)− α+2
= 2− (α− 2)/(α− 1), (11)  

which causes different outcomes for α > 2 and α < 2. For α > 2, the 
majority of failure quantity is concentrated on the minority of large 
failures; for α < 2, R is not well defined and almost all the failure 
quantity is derived from large failures. Because α > 2 occurs at low IR, we 
have mean failure volume < m ≥ m0(α − 1)/(α − 2); however, for high IR 
and α < 2, the distribution has no finite mean value because the maximal 
failure increases indefinitely with the number of failures (Newman, 
2005). Therefore, the Pareto exponent distinguishes the effects of low 
and high rainfall intensity. Considerable fluctuation in failure volume is 
expected to occur at high IR. 

The failure sequence (Eq.8) is determined by: 

{S0(IR) } =
{

MT(i) |T(i) = Poisson
(
ekλfλ

)
;Mi = Pareto

(
m0e− kλfλ

) }
, (12) 

Thus, the failure might be rightly called a PPP with parameters 
depending only on rainfall intensity. Because all the parameters are 
obtained from field experiments, this provides a physically based picture 
of slope failure. Fig. 5 presents a simulated failure sequence at IR = 54 
mm/h for comparison with the experimental results, highlighting the 
agreement in volume fluctuation and temporal interval. 

3.4. Surges from slope failures 

Parts of the failures will turn into separate surges when they move 
downward in the stream channel (Guo et al., 2021). A surge at time tj, 
S1(j), is formed by the failures that occur between tj and tj+1 through a 
random process: 

S1(j) =
∑

tj<t<tj+1

ζ(t)S0(t), (j = 0, 1, 2,….), (13)  

where {S0} represents the failures and {S1} represents the surges that 
result directly from the failures. The map {S0} → {S1} describes the first 
transition step from failures to surges in the tributary channel under the 
influence of slope. 

The coefficient ζ(t) takes the role of “selecting” failures that provide 
material supply to a surge. For individual failures, ζ(t) depends on soil- 
water interaction, whereas for the entire failure sequence, ζ(t) is in effect 
a random variable. Our experiments indicate that small failures are in
clined to “attach” the streambed or mix with water as a hyper
concentrated flow. Only failures exceeding a certain threshold would 
turn into debris flows. For example, at IR = 54 mm/h, the threshold is Mc 
≈ 50 (10− 3 m3), meaning that only 16% of failures are effective as 
suppliers to surges, accounting for 67% of the mass. It is a simple step to 
determine the effective mass fraction from the Pareto distribution. 

Table 3 
Exponents for failure interval and size varying with rainfall intensity.  

Parameters Tint Nc Mc λ β 

CT kT CN kN CM kM Cλ kλ Cβ kβ 

Values 45.1 − 0.022 53.3 0.021 8.94 0.022 0.22 0.021 1.33 − 0.005  

Fig. 4. Linear N–T relationship providing convincing evidence for identifying 
the Poisson process. 

Table 4 
Parameters determining failure sequence in the experiments.  

Parameters J1 J2 J3 J4 J5 J6 J7 

IR(mm/h) 12 18 25 36 45 54 60 
α 2.14 2.06 2.03 1.82 1.75 1.71 1.83 

m0 5.02 5.08 5.04 5.08 5.25 5.23 5.14 
λ0 0.0391 0.0387 0.0368 0.0409 0.0595 0.0633 0.097  
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Fig. 6 shows the simulation at IR = 54 mm/h in comparison with the 
observed surges. The real process contains 24 surges with mean soil 
volume of 141 (in unit of 10− 3 m3/s, similarly hereinafter) and total 
volume of 3400, while the simulation yields 28 surges with average 
volume of 138, and total volume of 3880. Moreover, the simulated surge 
sequence presents the same power law distribution of magnitude (inset 
in Fig. 6). From this example, it can be seen that the PPP model has the 
capability of predicting the intermittent surges from the failures. In the 
following, we apply this scenario to the watershed. 

It is noted that, the soil failures occurring in a sequence are only 
determined by the rainfall intensity; while the length of the sequence, or 
the number of failures, is controlled by the duration time of rainfall. In 
other words, a long-duration rainfall may lengthen the process and in
crease the number of failures, but the duration time as a quantity does 
not necessarily determine the duration of the event. 

4. Surges developing on the watershed scale 

4.1. Conceptual framework of hierarchic development from failures to 
surges 

The discussion above illustrates how tributary surges develop from 

failures. In reality, these tributary surges might continue moving 
downstream, enter streams of ever-increasing order of magnitude, and 
finally converge into surges in the mainstream. To achieve such a picture 
requires complete knowledge of surges in tributaries and their devel
oping routes, which is beyond any campaign of field observations or 
laboratory experiments. Here, we take an overall viewpoint, ignore 
details of intermediate processes, and simplify the surge evolution as a 
cascading process from source to mainstream in the hierarchic system of 
the watershed (Fig. 7). 

In this framework, the failures occur randomly in all possible sour
ces, and the surge develops as the following cascading process: 

{S0}→{S1}→{S2}→…→
{

Sj
}

…→
{

Sf
}
, (14)  

where {S0} represents the failure sequence, {Si} represents the inter
mediate mass sequences, and {Sf} represents the final sequence as the 
mainstream surges. Thus, this tributary process (or the first step of soil- 
flow transition, Eq.13) occurs repeatedly in streams of various order of 
magnitude throughout the watershed. 

4.2. Controlling parameters of surge development 

The cascading process (Eq.14) is governed by the Poisson intensity λ, 

Fig. 5. Simulated failure sequence at IR = 54 mm/h, in comparing with the observed sequence.  

Fig. 6. Observed and simulated surge sequence from failures (IR = 54 mm/h), with the cumulative frequency distribution of surge volume shown in the inset.  
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the Pareto parameter α, and the effective coefficient ζ of soil-flow 
transition, which can be determined as described below.  

1) Poisson intensity of failures over the sources 

The Poisson intensity λ is determined by the local rainfall intensity. 
Over the watershed, the failures represent the sum of numerous Poisson 
processes on different slopes. Following the additivity of the Poisson 
process, which claims that independent Poisson variables Xj = P(λj) have 
a sum that retains the Poisson property: ΣXi = P(Σλj), the failures over 
the entire source area will have the following intensity: 

λ0(R) =
∑

Ri

(Ai/AE)

/

λEi , (15)  

where subscript “0” means the sources (0-order tributary) in the hier
archic system of the watershed, λE is the intensity at IR, AE is the area of 
the test spot (i.e., 32 m2 in our experiments), and Ai is the area of the i-th 
source with the same soil condition (for the present, we do not consider 
soil heterogeneity over the sources, which matters little for the gener
ality of the scenario). Here, the test λE is determined by the empirical 
correlation λE = Cλexp(kλIR) (Eq.3 and Table 3), and the sources can be 
identified through the rainfall distribution. We have several gauges in 
the source areas (Fig. 1), each of which records the rainfall covering an 
effective source area. Therefore, the potential sources can be identified 
by field survey and spatial interpretation of rainfall. Table 5 lists the 
controlling parameters for the given rainfall events (in the table, “-” 
means no rainfall recorded at the gauge.) 

This over-source intensity λ0 has an intuitive explanation, i.e., the 

failure is a Bernoulli event satisfying a binomial distribution, with each 
event occurring with small probability p; however, over all the sources, 
the number n would become large such that np = λ0 determines the 
collective activities of failure. Table 5 lists the local rainfall intensity at 
each gauge (c.f. Fig. 1) and the corresponding overall λ0 (with the Pareto 
exponent α) for several debris flow events in JJG.  

2) Effective coefficient of soil-flow transition 

The cascading transition (Eq. 14) follows the mass-transition rule: 

SI+1(j) =
∑

Tj− 1<ti<Tj

ζ(Ii)SI(ti), (16)  

where the capital subscript I denotes the order of the sequence. This 
describes a sequence of thinning Poisson processes (e.g., Resnick, 2007), 
which means that each element in the sequence takes a contributing 
probability represented by ζ(i). The j-th element in the thinned sequence 
is supplied by elements between Tj-1 and Tj in the preceding sequence. 
Moreover, the thinned sequence retains the nature of the Poisson process 
but takes a new intensity, λ(SI+1) = ρλ(SI), with the time interval 
increasing by 1/ρ. For a single slope, ζ(I, i) is random and acts as an 
“effective coefficient” of mass supply. 

4.3. Realization of the processes from failures to mainstream surges  

1) Failures over the sources 

Taking event E990818 (i.e., the debris flow occurrence on Aug 18, 
1999; the same code applies to other events, e.g., in the following 
Table 8) as an example, and using the parameters in Table 5 (λ0 = 774.0, 
α = 2.06, and given m0 = 5.0 for low IR), we are able to generate the 
initial failures {S0} over the sources (Eq.12), setting a 6-h duration on 
the basis of the recorded rainfall. This causes 16,718,400 failures 
(Fig. 8a), amounting to a total volume of 52,761 m3.  

2) Cascading transition from soil to flow 

Field observations and experiments in JJG indicate that approxi
mately one third of the failure mass contributes to tributary surges. The 
total sediment of E990818 is 13,305 (m3), i.e., ~30% of the simulated 
quantity. Therefore, one third is considered a proper ratio of the effec
tive supply from the failures. Considering the self-similarity of the pro
cesses in the watershed, we assume the coefficient ζ in Eq.16 is constant, 
which gives the following transition rule: 

Mf = ζn M0, (17)  

where n is the number of cascading steps.  

3) Thinning of the sequence 

As the sequence develops, the time interval increases. In the source 
areas, the failures occur at short intervals (e.g., 1/λ0 ≈ 1/774 = 0.0012 
s) as if they were continuous over a large area. However, in a local spot, 
they are separated by an obvious interval (of the order of 10s), as 
observed in the experiments. Up to the mainstream sequence {Sf}, the 
time interval is elongated to the order of 100 s owing to the thinning of 
the Poisson process. For this, we have a “thinning probability,” or a 
ratio, of intensity: λi+1 = ρλi, (i = 0, 1, 2, …, f), meaning that: 

Tf = (1/ρnλ0) = ρ− nT0, (18) 

Field observations in the last tributaries (i.e., those joining the 
mainstream) indicate that the interval between surges is of the order of 
10s, which implies ρ ≈ 0.10. From 10− 3 s in the source area to 102 s in 
the mainstream, Eq.18 gives n = 5. This is a very specific and sensitive 
value. If n = 6, Tf would rise to 1000s, far beyond the real values. This 

Fig. 7. Conceptual framework of surge development from source areas to 
mainstream channel in a self-similar hierarchic watershed valley system. 

Table 5 
Controlling parameters of the PPP simulation based on rainfall distribution.  

Events IR1 IR2 IR3 IR4 λ0 α 

E080705 – 19.3 19.4 18.8 195.5 2.00 
E990818 6.4 12.7 – 19.5 774 2.06 
E990716 47 2.4 – 24.7 555 2.63 
E000704 32 21.6 – 37.8 245.4 1.57 
E080701 – 37.9 25.6 37.9 178.5 1.86 
E030605 32.5 22.3 – 57.8 189.9 1.65  
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agrees well with the fact that debris flows never develop in streams of 
higher order. For E990818, the time interval is 84 s on average, and 
Eq.18 gives ρ ≈ 0.11; thus, ζ = 0.79, which means that at each transition 
step, the mass loss is approximately 21%.  

4) Sequence development from source to mainstream 

Given the initial sequence {S0} generated by the controlling pa
rameters (Fig. 8a), we can calculate the high-order {Si} through the 
thinning operation. For instance, the interval of {S1} is λ1 = ρλ0 = 77.4, 
which yields a sequence of time intervals {T1, T2, …, TN}. Then, the mass 
at Ti is contributed by the failures in {S0} within (Ti-1, Ti), with ζ = 0.79. 
Repeating the operation leads to the final sequence. 

The coefficient ζ gives a lower limit for the mass supply and can be 
determined through the Pareto distribution of failure volume. The Par
eto parameter α determines a threshold Mc, where failures below which 

do not contribute to the next step of development. Owing to the so-called 
80/20 law (i.e., the large failures of only 20% account for 80% of the 
total) (e.g., Lipovctsky, 2009), the contributing failures might still ac
count for a large quantity. 

Table 6 lists the parameters of each step of the thinning process, in 
which N is the element number of the sequence at each step, MT is the 

Fig. 8. Cascading process of mass developing from source failures to mainstream surges. (a) Initial failure sequence {S0} over the source areas, (b) mass sequence in 
the third order {S3}, and (c) the ultimate sequence representing the mainstream surges. 

Table 6 
Parameters for cascade thinning of the mass transition sequences.   

N λ MT (m3) <T > s (s) 

{S0} 5,340,430 744.00 52,761 0.0013 
{S1} 574,236 81.57 41,099 0.012 
{S2} 60,383 8.94 34,797 0.11 
{S3} 6598 0.98 28,446 1.05 
{S4} 692 0.11 20,899 9.97 
{Sf} 78 0.012 16,146 88.40  
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total mass volume, and < T > s is the average time interval. At the final 
step {Sf}, the time interval is comparable with that between observed 
surges (i.e., 84 s), and MT represents the total volume of observed 
sediment delivery (1, 3305 m3). 

Fig. 8 shows three steps of the development sequence. The final 
sequence (Fig. 8c) is expected to represent the surge sequence in the 
mainstream, with which we plot the observed mainstream surges (only 
sediment being counted here) for comparison. It is noted that the fluc
tuation decreases greatly in the thinned sequences. In the following, we 
see that the thinning process cuts the “long tail” of the Pareto distribu
tion and reduces the power law to an exponential function. 

Similarly, the PPP model may apply to general cases. Table 7 lists 
several debris flow events in JJG, and Fig. 9 displays the basic quantities 
of simulated and observed surges, in which N is the observed number of 
surge, Ms is the total sediment volume (m3), M0 is the simulated total 
supplies of failure supplies (m3); and other terms are the same as those in 
Table 1-3. The simulation reproduces the fluctuation pattern of surges. 
In particular, the simulated Mmax agrees well with reality, which is 
directly derived from the thinning of the failure sequence governed by 
λ0 and ρ. This means that the simulation has the capability of predicting 
the surge sequence and the fundamental statistical features. 

4.4. Generalizing the simulation parameters 

In the above, we verified the PPP model through simulations using 
target events to estimate the transition ratio ρ. However, an applicable 
model should make predictions using parameters that can be pre
determined through operable routines. For this, we consider how the 
parameters vary between events. It should be noted that the three events 
under consideration (E990818, E010708, and E080701) represent three 
categories (c.f. Tables 5 and 7), i.e., in different situations of rainfall 
intensity, surge number, and magnitude. The ratio ρ varies in the range 
of 0.10–0.15, and this can be taken as representative of the general case. 
Moreover, ρ appears to decrease with λ0 in a power law form, i.e., ρ ≈
λ0
− m (m ≈ 0.15, e.g., Fig. 10), which means ρ decreases exponentially 

with IR because λ0 increases exponentially with local rainfall intensity (i. 
e., λE ≈ exp.(kλIR)). This leads to a short interval of the surge sequence, 
which agrees with the observations. 

In short, it is possible to determine the parameters from the rainfall 
distribution, and the key point is to identify the sources responding to 
the rainfall distribution. This is similar to the case of hydrologic simu
lation, where one has provable and applicable models but yet parame
ters need to be determined empirically. In this respect, it would be a long 
way to go for generally determining model parameters in practice. 

4.5. Verifying simulations through statistical properties of surge sequences 

4.5.1. Temporal variation of surge sequences 
For a random event, the reliability of a simulation relies on the sta

tistical properties, e.g., the temporal variation and probability distri
bution. We can define a time-dependent average (or the moving 
average) of mass, as follows: 

〈M〉n =
∑n

1
Mi , (19) 

The simulations reproduced the variation patterns of the surge se
quences, which are comparable with the observations, as shown in 
Fig. 11 (with “S” denoting the simulated result). Roughly speaking, the 
fluctuation patterns fall into three categories: 

(a) surges that fluctuate in the first episode and then decay in a gentle 
slope (E990818, E000704, and E080701, with λ0 = 774, 245.4, and 
178.5, respectively) (Fig. 11a); 

(b) surges that increase persistently in the first half of the period and 
then decay slowly (E030605, with λ0 = 189.9) (Fig. 11b); 

(c) surges that fluctuate gently throughout the entire process 
(E080705 and E990716, with λ0 = 195.5 and 552, respectively) 
(Fig. 11c). 

Broadly, <M > n rises and then falls linearly: <M > n ≈ sgn(n − nc) 
Kn, where sgn(x) is the sign function. Here, the key point is the time (or 
surge number nc) at which the curve approaches the peak. This is 
obviously governed by the details of the development processes (e.g., 
soil-water interactions in the tributaries and local conditions of the 
streambeds) and does not depend on an overall parameter (e.g., λ0). 
Nevertheless, the moving average reveals the gross decay of the event 
and implies that most events transport sediment in the earlier stage of 
the course (e.g., Liu et al., 2008, 2009). 

4.5.2. Scaling distribution of surge sediment 
It is particularly interesting that the surge sediment satisfies a gen

eral scaling distribution: 

P(M) = Cm− μexp( − M/Mc), (20)  

where P(M) is the exceedance percentage of surges with mass greater 
than M, C is the normalized coefficient, μ is an exponent, and Mc is a 
characteristic magnitude. It is found that μ = aLnC + b, where a and b 
are constants, and the distribution is characterized by the two parame
ters μ and Mc. Table 8 lists the parameters of the test events, with 
goodness-of-fit of R2 ≈ 1. Furthermore, the distribution falls upon a 
single exponential curve P*(M) = exp.(− M*) when the coordinates are 
rescaled by M* = M/Mc and P*(M) = P(M) M μ/C (Fig. 12). The coin
ciding distribution curve implies the existence of a universal mechanism 
underlying the development of surge sequences from various sources, 
which qualifies the reasonability of the presented PPP model. 

5. Discussion 

The PPP model is conceptually simple and practically useful in pre
dicting surge sequences. However, several problems concerning model 
application, verification, and limitation are worthy of further discussion. 

5.1. Limitation and application 

The PPP model proposed here is for intermittent debris flow surges 
originating from slope failures based on the in situ experiments simu
lating the rainfall-induced shallow soil failures and the following process 
of supplying the debris flows, and it does not pretend to encompass flows 
derived from transition of landslides (Iverson et al., 1997; Gabet and 
Mudd, 2006), failure of streambed sediment (Gregoretti and Fontana, 
2008), or mobilization of deposits by the firehose effect (Coe et al., 

Table 7 
Parameters and basic quantities of simulated sequences compared with observed events.  

Events Observations Parameters Simulation 

Tm N Ms Mmax λ0 ρ M0 Mf Mmax 

E080705 183 58 5.56 0.27 195.5 0.1228 17.43 5.1 0.38 
E990818 85 78 13.31 0.84 774.0 0.1088 52.76 16.15 1.17 
E990716 112 116 20.46 0.84 552.0 0.1101 67.27 20.86 0.87 
E000704 113 71 7.49 0.32 245.4 0.1293 17.69 6.26 0.44 
E080701 79 32 1.3 0.14 178.5 0.1479 4.92 1.85 0.21 
E030605 158 40 5.33 0.52 189.9 0.1272 15.28 5.82 0.71  
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2008), which also might result in surges, as we observed in tributaries in 
JJG. In addition, the quantitative results of this work are based on the 
experiments on a single small slope, which inevitably leads to some 
limitations when applying to a watershed covering large area of source 

slopes. 
Although we provide a plausible extrapolation from the spot exper

iments to the whole source areas, there are uncertainties in determining 
the involved parameters. Then, as a potentially practical framework for 
predicting intermittent debris flow surges from slope failures, the PPP 
model at present form is mainly conceptual. But for some special cases 
where the rainfall and material sources can be well identified, it may 
provide convincing predictions of the surge probability. 

In addition, in the PPP model, the soils are assumed to be “active” 
owing to gravity rather than “passive” and stimulated by flushing water; 
therefore, the model considers only the processes of soil supply and ig
nores the hydrologic process. In fact, the hydrologic process sets the 
background of the soil processes, which facilitates the formation and 
development of debris flows, and should be considered in the future 
work. 

5.2. Sensitivity, reliability, and predictability 

The model depends on several empirical parameters: λ0 determining 
the Poisson process of failure, α determining the Pareto distribution of 
failure volume, and ρ determining the effective mass supply to the surge. 
All these parameters are principally determined by rainfall intensity (e. 
g., Table 5), and thus the model can predict events under given rainfall 
conditions. However, the sensitivity to rainfall intensity means it is 

Fig. 9. Simulated surge sequences under different rainfalls compared with observed events.  

Fig. 10. The thinning factor decreases with Poisson intensity in a power- 
law form. 
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crucial to determine the rainfall distribution and to identify the 
responding sources, which is of great difficulty in practice because of the 
lack of accurate rainfall records at the slope scale (usually below 1 km2), 
and the high spatial variability of rainfall in mountainous watersheds. 

Nevertheless, it is possible for the PPP model to make a reasonable 
prediction of debris flows in the sense of susceptibility assessment, 
because the sources (determining λ0) can be identified and localized to 
high accuracy through geographic information system interpretation 
and field survey (e.g., photos acquired by an unmanned aerial vehicle), 
and both α and ρ vary gently within certain ranges and can be considered 
as constant in specific situation. More importantly, the sensitivity to 
rainfall intensity and distribution reveals the drawback of the assess
ment based on the so-called rainfall threshold overall a watershed. 

5.3. Generalization and implications 

Furthermore, for theoretical implications, the PPP model has 
revealed universal features of the cascading processes in a watershed, 
which might apply to a variety of hydrogeophysical processes. Actually, 
the model predicts a scaling distribution for the surges, which is spon
taneously derived from the thinning of the power law distribution of the 
failures. This provides a mechanism for transition from the family of 
power law distributions to exponential distributions, as generally 
observed in relation to natural phenomena. The randomness of the mass 
supply and debris flow formation is universal in nature, which implies 
that one must evaluate a debris flow in relation to local conditions rather 
than the global environment of the watershed. 

6. Conclusions 

We proposed a stochastic scenario and a PPP model for intermittent 
surges based on experiments on a natural slope. This marks an attempt to 
establish a framework for debris flow development from source to the 
mainstream channel within a watershed, especially for the surge phe
nomenon in JJG, where debris flows usually originate from rainfall- 
induced shallow slope failures over a wide range of sources rather 
than from a specific large landslide. The model incorporates the Poisson 
process of slope failure and the Pareto distribution of failure volume, 
with controlling parameters determined by the rainfall distribution and 
intensity. Specifically, we derived the following conclusions. 

1) The rainfall-induced slope failures can be considered as a Poisson 
process, for which the intensity parameter is determined by the rainfall 
intensity in the source areas. This determines the frequency or number 
of the failures. 

2) The failure volume satisfies the two-parameter Pareto 

Fig. 11. Fluctuation of the moving average sediment volume of the surge 
sequence for different events (S and E represent the simulated and monitored 
debris flow surge sequences, respectively). 

Table 8 
Distribution parameters for surge sediment of simulated and real events.  

Event C μ Mc (m3) 

E080705 Real 0.9514 - 0.0785 144.5 
Sim 0.9329 - 0.0545 184.9 

E990818 
Real 0.8843 - 0.0965 217.5 
Sim 0.7135 - 0.1458 252.7 

E990716 
Real 1.045 - 0.0036 436.4 
Sim 0.8355 - 0.0873 286.8 

E000704 Real 0.6156 - 0.2586 85.06 
Sim 0.966 - 0.0524 167.1 

E080701 Real 1.014 - 0.0372 90.83 
Sim 0.9032 - 0.1016 89.88 

E030605 
Real 0.9708 - 0.0277 344.7 
Sim 0.952 - 0.0346 333.1  

Fig. 12. Distribution of surge sediment of real and simulated surges.  

X. Guo et al.                                                                                                                                                                                                                                     



Engineering Geology 314 (2023) 106998

12

distribution, with a nearly constant shape parameter and a scale 
parameter varying exponentially with rainfall intensity. This describes 
the magnitude fluctuation of the failures. 

3) The shallow slope failures over the watershed may develop 
intermittent debris flow surges in the mainstream, which can be simu
lated by cascade thinning of the failure sequences. In this sense the 
surges are derived from a sequence of PPP processes. 

4) The PPP model may produce different fluctuation patterns of 
surge discharge and derive a scaling distribution of surge sediment. The 
PPP scenario of debris flow also represents the cascading evolution of 
mass movements in the self-similar hierarchic system of a watershed. 
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