文章编号: 1008 - 2786 - (2016) 4 - 468 - 08 DOI: 10.16089/j. cnki. 1008 - 2786.000152

颗粒组成与泥石流运动的涨落

李 泳^{1,2} 荷万春^{1,3} 汪保亮⁴ 刘道川^{1,3}

(1. 中国科学院山地灾害与地表过程重点实验室,四川 成都 610041;
2. 中国科学院水利部成都山地灾害与环境研究所,四川 成都 610041;
3. 中国科学院大学,北京 100049; 4. 西南交通大学土木工程学院,四川 成都 610031)

摘 要: 泥石流物源、流体和堆积物的颗粒分布满足 $P(D) = CD^{-\mu}\exp(-D/D_c)$,其中参数 $C \mu$ 和 D_c 由传统的 粒径分布特征决定。 μ 随细颗粒(特别是粘粒)含量的增大而增大 D_c 刻画粒径的范围,且随粗粒含量而增大。蒋 家沟泥石流的观测表明,同一场泥石流包含着数十到数百个不同性质、流态和规模的阵流。阵流的涨落和多样性 是与流体的颗粒组成密切相关的。一定的颗粒组成对应着一定的饱和颗粒浓度,决定一定的饱和流体状态。阵流 的涨落,是在没有达到饱和状态时的随机运动的状态。阵流涨落随 D_c 增大而趋于平缓;当流体达到饱和态时,阵 流达到最大的流深、流速和流量,且与颗分参数(μ , D_c)具有幂函数关系。运用本文的方法,可根据颗分参数来预 估泥石流的性质和规模。

关键词: 泥石流演化; 颗粒分布; 随机过程; 动力学参数; 泥石流评估 中图分类号: P642.23 ________文献标志码: A

宽级配的颗粒组成(从 10⁻⁶m 的粘粒到 10⁰m 的砾石)对泥石流的形成模式和运动方式起着决定 性的作用。颗粒组成对泥石流性质的影响,最显著 地表现在泥石流的阵流现象,而阵流表现最多样的 是位于昆明东川的蒋家沟(JJG)泥石流^[1-2]。蒋家 沟泥石流频率高(年均 10 次左右),阵流多(每场泥 石流包括几十至几百个阵流);即使同一场泥石流, 不同阵流有不同的物质组成、流态、流速、密度和流 量。

但颗粒组成如何影响流体性质,迄今尚无定量 的表述。常用的 Bagnold 数和 Savage 数,以特征颗 粒表征流体中颗粒碰撞、粘性、剪切和重力诸因子的 作用比较^[3-6],但很难从理论上确定所谓"特征颗 粒"的大小,而经验取值的范围可达几个数量级。 这主要是因为没有普适的颗粒分布表达形式。几十 年来,通常都用统计参数(如偏度、峰度)和一些特 殊粒径(如 D_{10} , D_{30} , D_{60})及其组合(如不均匀系数 C_u 和曲率系数 C_e)来刻画颗粒的组成和结构特 征^[7-10]。这些参数的选择都是经验性的,而且主要 基于单峰分布的土体,有些参数还依赖于正态(或 对数正态)分布。由于参数太多且定义不同(如中 值粒径 D_{50} 就有多种计算形式),很难将它们作为动 力学因子写进演化方程。

最近我们发现^[11-12] 泥石流从源地物质到流体 到堆积 ,其颗粒组成满足相同的分布形式 ,且可归结 为两个自然的分布参数。本文用蒋家沟观测的泥石 流数据 ,以新的颗粒分布形式来讨论颗粒与动力学 参数的关系。

1 泥石流颗粒的标度分布

通过对不同地区大量泥石流物质的颗粒分析,

收稿日期(Received date): 2015-09-22; 改回日期(Accepted): 2015-11-03。

基金项目(Foundation item):国家自然科学基金项目(No. 41471011)。 [This research is supported by National Natural Science Foundation ,Grant No. 41471011.]

作者简介(Biography):李泳(1967 -) ,男 研究员 重庆人。主要从事泥石流的系统性研究。 [Li Yong the author majors in researches on the systematic behaviors of debris flows.] E - mail: ylie@ imde. ac. cn

我们发现颗粒粒径分布(GSD)满足如下分布形式^[11,13]

$$P(D) = CD^{-\mu} \exp(-D/D_{c})$$
(1)

其中 D表示颗粒粒径 P(D) 为大颗粒径的累积百分比 ,参数 C , μ , D_e 为参数 ,通过用方程(1) 拟合通常的累积颗分数据而自然得到。为直观表达此分布的可靠性 , $\Diamond x = D/D_e$ 并以 P^* (D) = $P(D) D^*/C$ 重新标度累积百分比 ,则方程(1) 约化为简单的指数函数 P^* (D) = $\exp(-D/D_e)$,即不同样本的曲线落到同一条指数曲线上 ,如图 1 是不同流域不同泥石流物质(物源、流体和堆积)的颗粒分布。

当 $D < < D_e$ 时 函数(1) 归结为 $P(D) ~ D^{-\mu}$; 当 D > > 1 mm 时 $P(D) ~ \exp(-D/D_e)$ 。这意味 着 μ 和 D_e 分别刻画了细粒和粗粒组分。由于 C 与 μ 呈现确定的对数关系^[11] ,分布(1) 归结为两个参 数: μ 和 D_e 。根据不同区域泥石流物质的样本分析 , 粘性泥石流颗粒组成大致有 $\mu < 0.10$,而 D_e 约在 15 ~ 30 mm 之间。(μ , D_e) 呈现明显的区域性差 别 .但其分布几乎是随机的 ,即 μ 与 D_e 没有明确的 关系(图 2)。

对泥石流流体而言 $\mu 与 D_e$ 之间存在着确定 的关系。根据蒋家沟近 50 年来泥石流的观测数据 (表1,2) 流体密度与 μ 和 D_e 分别存在幂函数关 系^[11]:

$$\boldsymbol{\mu} \sim \boldsymbol{\rho}^{-q} , \boldsymbol{D}_{c} \sim \boldsymbol{\rho}^{p}$$
 (2)

因而有

图 2 不同地区泥石流物质颗分参数

Fig. 2 (μ , D_c) for debris flows in different regions

图 3 泥石流颗粒参数的耦合关系

$$D_c \sim \mu^{-r} \tag{3}$$

也就是说 流体颗粒参数 μ 和 D_e 之间存在负幂形式 的 "耦合"关系(图3) 这一点有别于源地和堆积物 质的特点 是因为流体来自不同的物源而且不断经 历着动力学的 "搅拌"和 "筛选"(如冲淤和侵蚀)。 大致说来 流体密度与颗粒组成存在对应一定的关 系(表3)。

第4期

34 卷

表1 泥石流流体颗粒组成

Tab. 1 Grain size frequency of debris flows													
泥石流密度		不同粒径(mm)下的累积%											
$/(g/cm^3)$	40	20	10	5	2	1	0.5	0.25	0.1	0.05	0.01	0.005	0.001
1.83	2.74	5.72	9.9	17.45	48.54	50.16	53.54	58.07	63.94	68	84	97.2	97.2
2.17	6.36	20.37	39.44	53.29	65.6	70.38	72.5	74.9	77.33	79	86	95	98.2
1.99	1.03	8.79	23.44	38.92	57.08	61.6	67.1	70.56	74.16	76.4	84.5	96.5	97.9
2.08	5.31	18.67	36.64	51.06	66.25	67.86	69.67	74.94	77.31	79.4	94.2	97.4	98.14
2.20	11.49	29.33	43.01	59.52	69.2	72.38	76.35	78.26	80.58	83	94	97.2	98.4
2.21	19.4	32.95	47.92	60.75	72.39	75.87	78.59	80.65	83.22	84.8	93.8	97.8	98.6
2.25	16.99	34.95	51.43	63.56	74.38	77.89	80.65	82.4	84.43	86	94.2	98	98.7
2.16	2.09	11.94	30.8	46.25	60.84	64.79	68.83	76.5	75.27	77.2	91	96.8	98
2.25	8.7	17.16	37.2	54.26	70.05	71.58	74.65	77.02	79.41	81.6	92	97.5	98.4
2.07	2.18	15.26	34.76	48.39	62.44	66.02	70.35	72.97	76.08	78.4	92	97.2	98.2

表 2 流体密度与颗粒分布参数 Tab 2 CSD parameters of debris flows

泥石流密度				
ho / (g/cm ³)	С	μ	D_c	- R ²
1.83	56.29	0.085 02	6.08	0.979 3
2.17	72.89	0.041 76	18.87	0.9954
1.99	67.41	0.055 63	11.16	0.994 5
2.08	72.39	0.047 64	17.72	0.9901
2.2	75.76	0.040 85	23.36	0.994 5
2.21	77.8	0.037 30	28.47	0.994 3
2.25	80.07	0.032 56	28.69	0.9961
2.16	70.65	0.050 14	13.99	0.993 3
2.25	76.08	0.038 50	16.7	0.9908
2.07	70.77	0.050 58	16.06	0.994 2

表 3 流体密度与颗粒分布参数

Tab. 3	Properties	of	debris	flow	responding	to	the	grain	size	distribution
--------	------------	----	--------	------	------------	----	-----	-------	------	--------------

这体性医	密度	GSD 参数					
而冲住灰	/(g/cm ³)	С	μ	D_c / mm			
高含沙水	1.2~1.5	$10 \sim 20$	0.20~0.30	< 2			
低密度泥石流	1.6~1.9	30~60	0.05~0.10	2~15			
高密度泥石流	>2.0	60 ~ 80	< 0.05	>15			

颗粒组成与流体密度的关系,类似溶质与溶液的关系。由于颗粒组成的随机性和非均匀性,流体运动有着巨大的涨落,因而密度也有波动。确定的密度-颗粒关系代表的是涨落趋于稳定的状态——如达到某种饱和的颗粒浓度。

2 阵流运动的涨落

2.1 阵流的涨落

涨落是阵流的显著特征,既有流体内部的涨落 (与非均匀性和稳定性有关),也表现为不同阵流的 涨落(速度、密度和流量都不同)。具体说来,阵流 涨落表现为相同流体密度下呈现不同的流深和流 速。目前缺乏阵流内部的观测数据,我们仅考虑阵 流间的涨落,即以单个阵流作为一个流体单元,其特 征参数为流速(V)、流深(H)、流量(Q),以及对应的 颗粒参数(μ , D_c)。这些参量都可以直接通过观测 获取。至于其他性质如屈服应力和粘性系数,涉及 更多实验技术和条件,这里暂不考虑。

1) 流深涨落

图 4 是蒋家沟若干典型泥石流事件的阵流流深 随流体密度的涨落 图 5 是所有阵流的流深涨落。

统计发现,一定密度的阵流流深呈现对数正态 分布^[12],但随着流体密度的增大,分布趋于平稳,即 涨落减弱。由此可推测,当颗粒达到某种饱和状态 时,流体将具有一定的动力学参数。考虑涨落点的 上界,即一定密度下所达到的最大流深,可以发现流 深与密度(从而也与颗分参数)呈幂函数关系

$$H_{\rm max} = k\rho^m \sim D_c^{m/p} \sim \mu^{-m/q} \tag{4}$$

幂指数 m 的范围是 4.5 ~ 7.6 随泥石流事件而变 化。这是因为每个事件的每个阵流都有不同的物质 组成,因而不同样本群的统计结果也不同。重要的 是,幂函数关系的存在意味着一定密度的流体存在

图4 不同泥石流事件的阵流流深涨落

Fig. 4 Flow depth fluctuation with density for individual debris flows

最大可能流深 其极限随密度的增大而增大。

2) 速度涨落

流速与流深密切相关,因而也存在对应的涨落 (图5右);而且,速度 – 流深存在简单的幂函数关 系^[14]

$$V = C_V H^n \tag{5}$$

式中系数 $C_v \sim 7.0$ 指数 n = 0.39。另外, $V \subseteq H$ 都 满足 Weibull 分布,这样证明二者存在幂函数关 系^[12]。于是 速度上限也与颗分参数有如下关系: $V_{\text{max}} = C_V H_{\text{max}}^n \sim D_c^{mn/p} \sim \mu^{-mn/q}$ (6)

3) 流量涨落

流深与流速的涨落决定了流量的涨落。忽略沟 道几何因子,单宽流量(*Q_u*)的涨落(图6,7)也应满 足幂函数关系:

$$Q_{u} = VH = C_{V}H^{n+1} \sim \rho^{m(n+1)}$$
(7)

实际上 蒋家沟的数据表明 流量也服从单宽流量一 样的涨落规律(图 8)。

关系(7) 当然也可用颗分参数来表示:

$$Q_u \sim \rho^{m(n+1)} \sim D_c^{m(n+1)/p} \sim \mu^{-m(n+1)/q}$$
 (8)

根据蒋家沟所有阵流数据 我们有

34 卷

图6 阵流单宽流量涨落

Fig. 6 Discharge fluctuation under the constraint of density (for individual events)

 $Q_u = 0.33\rho^{5.82} = 1.45D_c^{1.01}$ 或 $Q_u = 0.29\mu^{-1.45}(9)$ 尽管 $\mu 与 D_c$ 存在一定的"耦合"(图3),但在具体的事件中,其关系也存在波动,因此我们考虑用(9)的均值来估计极限单宽流量:

 $Q_{u} = (1.45D_{c}^{1.01} + 0.29\mu^{-1.45})/2 = 0.73D_{c}^{1.01} + 0.15\mu^{-1.45}$ (10)

Fig. 7 Discharge fluctuation under the constraint of density (for all observed events)

图 8 泥石流流量的涨落

Fig. 8 Fluctuation of discharge of debris flows in JJG

分别用式(9)和(10)对一组实测的泥石流进 行单宽流量估计,结果如表4(作为参考,表中还列 了实测的输沙量 S和流量 Q)。从两个参数得到的 单宽流量(Q_{De} 和 Q_{μ})很接近(只有一个低密度的例 外);均值的估计结果更好。图10呈现了更多的泥 石流样本的估计结果,证明了估算方法的有效性。 这里的估计是基于泥石流体的颗粒组成和流体的动 力学参数 因而不受流域背景因素的影响 应该具有 较高的普适性。至少 我们认为幂函数关系是存在, 即使系数和指数可能随流域或事件而有差别。遗憾 的是 没有其他流域的泥石流数据 不能直接检验其 普适性。

图 9 泥石流单宽流量估计对比 Fig. 9 Comparison between estimated unit-width discharges of debris flow

2.2 颗粒组成的变化与泥石流饱和浓度

颗粒参数与流量的关系,说明了颗粒对流体运动的控制作用。从速度关系可见,特征粒径 *D*。越

大 速度越大。而 *D*。 越大意味着颗粒组成的大颗粒 越多 ,参与泥石流结构的大颗粒也越多 。因而泥石流 的输沙能力越强 ,输沙量越大。 蒋家沟泥石流数据 表明 、颗粒浓度(*S*) 随 *D*。 幂函数式地增大(图 11):

$$\sim D_c^r (R^2 = 0.92)$$
 (11)

因为 $Q_u \sim D_c$,关系(11) 相当于 $Q_u \sim S^{1/r}$,即流量与 输沙是正相关的。

S

图 11 特征粒径与泥石流输沙的关系

Fig. 11 Relationship between sediment granular concentration and D_c

Tab. 4 Unit-width discharge of debris flow									
$\rho/(g/cm^3)$	μ	D_c	$Q_{Dc} / (m^2 / s)$	$Q_{\mu}/({\rm m}^2/{\rm s})$	$Q_a / (m^2 / s)$	S/m^3	$Q /(m^3/s)$		
1.57	0.069 1	2.25	3.27	13.96	8.86	900	398		
1.83	0.085 0	6.08	8.82	10.34	9.79	1 317.5	367		
1.84	0.075 0	9.06	13.13	12.40	13.02	1 333.3	456		
2.10	0.038 0	17.87	25.92	33.19	30.22	1 747.6	670		
2.17	0.041 8	18.87	27.36	28.99	28.77	1 854.0	570		
2.00	0.055 6	11.16	16.18	19.13	18.04	1 579.4	750		
2.08	0.047 6	17.75	25.73	23.99	25.36	1 709.5	894		
2.20	0.040 5	23.07	33.46	30.29	32.51	1 911.1	884		
2.21	0.036 4	27.48	39.85	35.34	38.34	1 923.8	736		
2.25	0.032 6	28.69	41.61	41.59	42.46	1 984.1	789		
2.16	0.0501	13.99	20.28	22.24	21.71	1 847.6	1000		
2.25	0.038 5	16.68	24.19	32.66	29.07	1 985.7	736		
2.07	0.050 6	16.06	23.29	21.96	23.09	1 704.8	763		
2.19	0.037 7	21.20	30.74	33.68	32.90	1 888.9	763		
2.21	0.034 2	19.10	27.70	38.75	33.99	1 914.3	732		
2.19	0.039 2	20.24	29.35	31.80	31.23	1 882.5	663		
2.09	0.053 8	13.11	19.00	20.10	19.96	1 730.2	763		

表4 泥石流单宽流量估计

颗粒对流量的约束,对应于流体的饱和浓度,即 当流体达到饱和时,流量达到最大。在很多情况下, 颗粒不能达到饱和,因而出现涨落。

另一方面,土体的启动依赖于超孔隙压。当 μ 越小时,自然状态下的孔隙率越小,超孔隙压越大, 越利于流体的高速运动。因而 μ 越小,泥石流的输 沙能力越强。

一般说来,我们可以假定泥石流的饱和颗粒浓 度与颗分存在某种函数关系,如 $S = f(\mu, D_c)$,其对 应的流量关系为 $Q_u = F(\mu, D_c)$,而单宽流量方程就 是这类关系的体现。

2.3 泥石流的颗粒效应

通常以 Bagnold 数和 Savage 数来表征泥石流的 颗粒效应。Bagnold 数(N_B) 定义为(稳定均匀剪切 流中) 颗粒碰撞与粘性力之比^[3]:

$$N_B = v_s \rho_s \gamma \, \delta^2 / \left(1 - v_s \right) w \tag{12}$$

Savage 数 N_s 定义为颗粒碰撞的剪切应力与重力之比^[4]:

$$N_{s} = \rho_{s} \gamma^{2} \, \delta^{2} / (\rho_{s} - \rho_{f}) \, g H_{tan} \varphi \qquad (13)$$

其中 v_s 为颗粒浓度 ρ_s 为颗粒密度 δ 为粒径 γ 为 剪切率 $\mu \rho_f$ 分别为颗粒间液体粘度和密度 g 为重 力加速度 H 为流深 φ 为摩擦角。当 $N_s > 0.10$ 或 $N_B > 15$ 时 ,颗粒效应起主导作用^[5-6,15]。据 Iverson^[6]的估计 N_s 在 10⁻⁷ ~ 10⁻⁴之间而 N_B 在 0.4 ~ 4 之间 都远小于颗粒效应的临界值 ,说明泥石流的 颗粒效应很微弱。这与通常将泥石流作为一相流的 思想是一致的。

然而,参数的估计的不确定性可达几个数量 级^[6,16] 因此颗粒效应的判断也很不确定。例如,对 典型的粘性泥石流(如蒋家沟泥石流)来说,各参数 取值如下:

 $\rho_s \sim 2.65 \ \rho_f \sim 1.4 (g/cm^3) \ \nu_s \sim 0.80 \ \rho_d \sim 2.20$ (g/cm³), $\varphi \sim 30^\circ g \sim 10 \text{ m/s}^2$, $H \sim 2 \text{ m}$

则无量纲参数简化为

 $N_B \sim 10\gamma \ \delta^2 / w \ N_S \sim 0.1 \gamma^2 \ \delta^2$ (14) 由于泥石流颗粒范围达多个数量级,我们没有 办法从理论上确定 δ_\circ 根据分布(1), D_c 确定一个 特征的"粗粒"粒径且与密度和颗粒浓度相关,因此 我们考虑用 D_c 来代替 δ_\circ

参数中的剪切率,可以用速度 - 流深关系(5) 来估计:

$$\gamma = \partial V / \partial h = n C_V h^{n-1} \sim n C_V D_c^{n-1}$$
 (15)
其中以 D_c 代剪切流深 ,是因为最大剪切发生在底

部 ,那部分流体的厚度 ,大约等于一个完整的颗粒集团的大小 ,也就是特征颗粒 *D*_c。

至于颗粒间流体的粘性系数(w),更与颗粒组 成有关;即使只考虑 0.075 mm 以下的粉粒和粘 粒^[6] w 也不确定。我们认为 颗粒间流体的性质应 该随流体的颗粒组成而变化,不存在固定颗粒组成 和固定粘性的流体。事实上,蒋家沟的流变实验表 明 w 还呈现随 D_e 线性增大的趋势。一般而言,w大约在 0.02~0.2 之间,上限估计可取 w = 0.02。

 $N_{s} \sim 0.1 (nC_{v})^{2} D_{c}^{2n} N_{B} = 10 (nC_{v}) D_{c}^{n+1} / w$ (16)

根据前面的结果 ,n = 0.4 , $C_v = 7.0$,于是 $N_s \sim 0.78 D_c^{0.8}$, $N_B \sim 1000 D_c^{1.4}$ 。

考虑一个典型的特征粒径 *D_e* ~ 0. 03 mm ,我们 得到两个参数的估计:

N_s~0.05 *N_B*~10。这两个值都大于文献的估 计^[6] ,且分别在数量级上接近临界值 0.1 和 15。可 见 ,泥石流应该存在相当程度的颗粒效应 ,特别是当 *D_c* 较大的高密度泥石流时。在实验中 ,也确实发现 泥石流有显著的颗粒碰撞效应^[6,16]。实际上 ,在现 有的泥石流模型中 ,几乎都没有考虑具体的颗粒组 成(顶多区分细粒和粗粒),从而也没有真正考虑颗 粒效应。

3 结论与讨论

泥石流的颗粒组成满足分布 $P(D) = CD^{-\mu} \exp(-D/D_e)$,可用参数(μ , D_e) 完整描述颗粒组成特征。对泥石流物源和堆积 (μ , D_e) 是随机的,而对泥石流流体,存在幂函数式的 $\mu - D_e$ 耦合关系,说明泥石流流体的颗粒组成是经过动力学"调整"的,因此颗粒组成蕴含着动力学效应。

蒋家沟泥石流阵流的多样性和涨落,既反映了 泥石流物源的多元性,也体现了颗粒组成对动力学 的影响。当颗粒浓度到达某种临界状态(如饱和 态)时,阵流将趋于一定的动力学状态,呈现出流速 和流量与颗分参数(μ,*D*_e)的幂函数关系。由此我 们可以根据颗分参数估计泥石流流速和流量的上 界。这有助于根据物源评估可能的泥石流性质。

颗粒组成与阵流的涨落还说明,即使在同一个 流域,在相似的背景条件下(如蒋家沟),泥石流也 不具有确定的动力学性质,而是涨落的,随机的(如 流深和流速都满足 Weibull 分布)。换句话说,一个 流域并不存在"抽象的"背景因子决定的泥石流。 这意味着我们不能通过流域的背景因子来预测单个 的泥石流事件。

本文的阵流数据虽然都来自蒋家沟,阵流的涨 落现象却是普遍的,颗粒分布形式也是普遍的,所以 本文的分析具有一定的普适意义。

致谢:本研究获国家自然科学基金(No. 41471011)和中国科学院山地灾害与地表过程重点 实验室资助。

参考文献(References)

- [1] Liu Jingjing , Li Yong , Su Pengcheng , et al. Temporal variation of intermittent surges of debris flow [J]. Journal of Hydrology , 2009 , 365(3-4): 322-328
- [2] Li Yong, Liu Jinging, Hu Kaiheng, et al. Probability distribution of measured debris-flow velocity in Jiangjia Gully, Yunnan Province, China [J]. Natural Hazards, 2012, 60(2): 689-701
- [3] Bagnold R A. Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear [J]. Proceedings of the Royal Socity: Ser A ,1954 , A225(1160): 49 – 63
- [4] Savage S B. The mechanics of rapid granular flows [J]. Advances in Applied Mechanics, 1984, 24: 289 - 366
- [5] Savage S B ,Hutter K. The motion of a finite mass of granular material down a rough incline [J]. Journal of fluid mechanics ,1989 ,199: 177 - 215
- [6] Iverson R M. Physics of debris flow [J]. Rev. Geophys , 1997 , 35: 245 – 296
- [7] Folk R L, Ward W C. Brazos River bar, a study in the significance of grain size parameters [J]. Sediment Petrol, 1957, 27: 3-26

- [8] Vanoni V A. Sedimentation Engineering [M]. New York: American Society of Civil Engineers, 1975:424
- [9] Kondolf G M ,Adhikari A. Weibull vs. lognormal distributions for fluvial gravels[J]. Journal of Sedimentary Research ,2000 ,70: 456 - 460
- [10] Rubin D M , Topping D J. Quantifying the relative importance of flow regulation and grain size regulation of suspended sediment transport α and tracking changes in grain size of bed sediment β [J]. Water Resources Research , 2001 , 37(1) : 133 146
- [11] Li Yong , Zhou Xiaojun , Su Pengcheng , et al. A scaling distribution of grain composition of debris flow [J]. Geomorphology , 2013 , 192: 30 - 42
- [12] Li Yong ,Liu Jingjing ,Guo Xiaojun ,et al. Relationship between grain composition and debris flow characteristics: a case study of the Jiangjia Gully in China [J]. Landslide 2015 , 12(1):19-28
- [13] 李泳 谢江 周小军 ,等. 泥石流颗粒的标度分布[J].四川大学 学报(工程科学版) 2013 ρ1:1-7 [Li Yong, Xie Jiang, Zhou Xiaojun et al. A Scaling Distribution for Grain Composition of Debris Flow[J]. Journal of Sichuan University: Engineering Science Edition 2013 ρ1: 1-7]
- [14] 李泳,胡凯衡,陈晓清. 泥石流堆积的分布[J].山地学报, 2004 22(3):332-336[Li Yong, Hu Kaiheng, Chen Xiaoqing. Thickness Distribution of Debris - Flow Deposition[J]. Journal of Mountain Science 2004 22(3):332-336]
- [15] Iverson R M, Denlinger R P. Flow of variably fluidized granular masses across three-dimensional terrain: 1. Coulomb mixture theory[J]. J. Geophys. Res ,2001 ,106(B1): 537 – 552
- [16] Kaitna R , Rickenmann D. Flow of different material mixtures in a rotating drum [G]// Cui P ,Cheng , Ch. (Eds.). Debris – Flow Hazards Mitigation , Fourth International DFHM Conference: Mechanics , Prediction and Assessment , 2007: 10 – 13

Grain Composition and the Fluctuation of Debris Flow Motion

LI Yong^{1,2} ,GOU Wanchun^{1,3} ,WANG Baoliang⁴ ,LIU Daochuan^{1,3}

(1. Key Lab. of Mountain Hazards and Surface Processes , Chinese Academy of Sciences , Chengdu 610041 , China;

2. Institute of Mountain Hazards and Environment, Chinese Academy of Sciences&Ministry of Water Conservancy, Chengdu 610041, China;

3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;

4. School of Civil Engineering , Southwest Jiao tong University , Chengdu 610031 , China)

Abstract: Debris flow body is composed of a wide range of grains and Its grain size distribution (GSD) is found to satisfy a general expression , $P(D) = CD^{-\mu} \exp(-D/D_c)$. The grain composition can be described by the GSD parameters (μ , D_c) , with μ representing fine content and D_c defining a characteristic scale of grain aggregate. It is found that the fluid has a coupled (μ , D_c) which is distinct from the source materials and deposits. Observations on debris flows in the Jiangjia Gully (JJG) have revealed great fluctuations; we fourd that the fluctuations are controlled by thair grain composition , and they will approach some steady state when granular concentration were saturated , and then both the flow depth and velocity gained a power-law relationship regardiy μ and D_c . From the method introduced here it is possible to use the GSD parameters of the sedimentary materials to estimate the probably maximal discharge and velocity of a debris flow.

Key words: debris flow; grain distribution curve; scaling distribution; distribution parameters